我们考虑权值是 1 到 $n$ 的 BST,它具有下列性质:
若 $k$ 是一个非根叶子,且是个左儿子,则 $k$ 的父亲是 $k+1$ 。
证明:假设 $k$ 的父亲是 $p$ 且 $p \ne k + 1$,则 $p > k + 1$;显然 $k + 1$ 不可能是 $k$ 的祖先。
设 $k$ 和 $k + 1$ 的最近公共祖先是 $t$,则有 $k < t < k + 1$ 或者 $ k + 1 < t < k$,矛盾!
同理可证,若 $k$ 是一个非根的叶子,且是个右儿子,则 $k$ 的父亲是 $k - 1$ 。
注:上述性质也可以从「BST 的任意子树中 key 都是连续的」这个性质推出。
从而可以得出,striped BST 的所有叶子都是左儿子。
perfectly balanced BST 只有最后一层可能不满,其他层都是满的。
$n$ 个点的 perfectly balanced BST 的高度是 $\floor{\log n}$ 。
Q:是否只要满足
就一定存在一种填充权值的方案使得这棵树是一棵 perfectly balanced striped BST?
A:不是。
有根树具有天然的递归结构。
容易看出,
欲求 $n$ 个点的 perfectly balanced striped BST 的数量,可以枚举根节点的权值。一棵子树内的权值必定是连续的,根节点的权值确定后,根的左右子树的节点数就确定了。设根节点的权值是 $r$,则左子树中有 $r - 1$ 个点,权值范围是 $1$ 到 $r - 1$;右子树中有 $n - r$ 个点,权值范围是 $r + 1$ 到 $n$ 。左子树的根的权值的奇偶性须跟 $r$ 不同,换言之,左子树的根的权值须与其中点的个数的奇偶性相同。右子树的根节点的权值须跟 $r$ 同奇偶。设右子树的根的权值是 $w$;把右子树的权值平移到 $1$ 到 $n - r$ 以后,$w$ 对应于 $w - r$,$w$ 与 $r$ 同奇偶意味着 $w - r$ 是偶数。
总而言之,一个 $n$ 个节点,权值是 $1, 2, \dots, n$ 的 perfectly balanced striped BST 能作为根的左子树仅当其根的权值与其中节点数同奇偶;能作为根的右子树仅当其根节点的权值是偶数。
设 $T_1, T_2$ 是两棵 perfectly balanced striped BST。
若以 $T_1$ 为左子树,$T_2$ 为右子树能组合成一棵新的 perfectly balanced striped BST,则 $T_1, T_2$ 除了需要满足上述条件外,还需满足二者高度相等或二者高度相差一且高度较小者是完美二叉树。
对于 $n \ge 5$,$n$ 个点的 perfectly balanced striped BST 的根节点的左右两棵子树的高度都不小于 1 。从上一节得出的两必要条件可以推出,此时左右两子树都不是完美二叉树,这意味着二者高度相同。设 $n$ 个点的 perfectly balanced BST 的高度是 $h$,则根的左右子树的高度都是 $h - 1$ 。
考虑高度为 $i$($i \ge 2$)的 perfectly balanced striped BST,将其中能作为高度为 $i + 1$ 的 perfectly balanced striped BST 的根的左子树和右子树的 perfectly balanced striped BST 的「信息」分别放到两个列表 $L_i$ 和 $R_i$ 中。信息表为有序二元组:(节点数, 方案数)。
从 $L_i$ 中任取一元素 $\ell$,从 $R_i$ 中任取一元素 $r$,通过组合 $\ell, r$ 来构造 $L_{i + 1}$ 和 $R_{i + 1}$ 。
$L_1 = \{(2, 1)\}, R_1 = \{(2, 1)\}$
$L_2 = \{(5, 1)\}, R_2 = \{(4, 1)\}$
Codeforces 1237E Perfect Balanced Binary Search Tree
原文:https://www.cnblogs.com/Patt/p/11692230.html