题目大意:给定一个n次一元多项式,求出所有解。
解题思路:牛顿迭代法,对于任意给定x,通过牛顿迭代法可以趋近距离x最近的解x0。每次找到一个解后,用多项式除法除掉x?x0后继续求解。
牛顿迭代法:xi+1=xi?f(x)f′(x)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 10;
int N;
double a[maxn];
void div (double* f, double x, int n) {
f[n+1] = 0;
for (int i = n; i >= 0; i--)
f[i] += f[i+1] * x;
for (int i = 0; i < n; i++)
f[i] = f[i+1];
}
double func (double* f, double x, int n) {
double ret = 0, u = 1;
for (int i = 0; i <= n; i++) {
ret += f[i] * u;
u *= x;
}
return ret;
}
double newton (double* f, int n) {
double fd[maxn];
for (int i = 0; i < n; i++)
fd[i] = f[i+1] * (i+1);
double x = -100;
for (int i = 0; i < 100; i++)
x -= func(f, x, n) / func(fd, x, n-1);
return x;
}
void solve () {
for (int i = 0; i < N; i++) {
double x = newton(a, N-i);
printf(" %.4lf", x);
div(a, x, N-i);
}
}
int main () {
int cas = 1;
while (scanf("%d", &N) == 1 && N) {
for (int i = N; i >= 0; i--)
scanf("%lf", &a[i]);
printf("Equation %d:", cas++);
solve();
printf("\n");
}
return 0;
}
uva 10428 - The Roots(牛顿迭代法),布布扣,bubuko.com
原文:http://blog.csdn.net/keshuai19940722/article/details/38726925