样例输入
2 41 1 96 288 95 1 37 1776
样例输出
6 2
以为是数论,果断放弃,看了看数据,发现可以暴搜得一半的分,然后...... $rank$ 出来之后,发现自己 $250pts$ ......
首先对于题意进行分析,题意要求的是
满足使得 $gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$ 的 $x$ 有多少取值。
那么,我们将这些关系分析一下
首先可以肯定这个关系:$a_0\cdot k_1=x$
那么同理,这个关系也是肯定存在的:$x\cdot k_2=b_1$
那么将这两个等式综合一下,可得:$$a_0\cdot k_1k_2=x\cdot k_2=b_1$$
再浅显地理解一下,如果 $b_1%a_0 ≠ 0$ ,那么答案肯定是 $0$ 的。
我们先设 $x={p_1}^{k_1}{p_2}^{k_2}......{p_n}^{k_n}$
然后,根据 $a_0,a_1$ 与 $b_0,b_1$ 分析他们分别对于 $x$ 有什么限制。
首先,我们看第一组 $a_0,a_1$
我们先设
$a_0={b_1}^{t_1}{b_2}^{t_2}......{b_m}^{t_m}$
$a_1={c_1}^{q_1}{c_2}^{q_2}......{c_v}^{q_v}$
首先根据 $gcd$ 的定义,我们可以知道每一个 $q_i=min\{k_i,t_i\}$
那么我们来讨论一下:
然后再分别计数即可。
而对于第二组,也可以用同样的方法进行分析,具体细节不作赘述。
丢个代码:
想看代码?还在码中......
原文:https://www.cnblogs.com/MachineryCountry/p/11715618.html