目录
本文参考:
《Prometheus官方文档》,或网盘下载《Prometheus操作指南.pdf》(提取码:1l8m)
Prometheus受启发于Google的Brogmon监控系统(相似的Kubernetes是从Google的Brog系统演变而来),从 2012年开始由前Google工程师在Soundcloud以开源软件的形式进行研发,并且于2015年早期对外发布早期版本。 2016年5月继Kubernetes之后成为第二个正式加入CNCF基金会的项目,同年6月正式发布1.0版本。2017年底发布 了基于全新存储层的2.0版本,能更好地与容器平台、云平台配合。 Prometheus作为新一代的云原生监控系统,目前已经有超过650+位贡献者参与到Prometheus的研发工作上,并且 超过120+项的第三方集成。
监控的目的
与常见监控系统比较
对于常用的监控系统,如Nagios、Zabbix的用户而言,往往并不能很好的解决上述问题。
Prometheus的优势
Prometheus是一个开源的完整监控解决方案,其对传统监控系统的测试和告警模型进行了彻底的颠覆,形成了基于 中央化的规则计算、统一分析和告警的新模型。 相比于传统监控系统Prometheus具有以下优点:
Prometheus核心部分只有一个单独的二进制文件,不存在任何的第三方依赖(数据库,缓存等等)。唯一需要的就是 本地磁盘,因此不会有潜在级联故障的风险。
Prometheus基于Pull模型的架构方式,可以在任何地方(本地电脑,开发环境,测试环境)搭建我们的监控系统。 对于一些复杂的情况,还可以使用Prometheus服务发现(Service Discovery)的能力动态管理监控目标。
Pometheus鼓励用户监控服务的内部状态,基于Prometheus丰富的Client库,用户可以轻松的在应用程序中添加 对Prometheus的支持,从而让用户可以获取服务和应用内部真正的运行状态。
所有采集的监控数据均以指标(metric)的形式保存在内置的时间序列数据库当中(TSDB)。所有的样本除了基本的指 标名称以外,还包含一组用于描述该样本特征的标签。
如下所示:
http_request_status{code='200',content_path='/api/path', environment='produment'} => [value1@timestamp1,value2@timestamp2...]
http_request_status{code='200',content_path='/api/path2', environment='produment'} => [value1@timestamp1,value2@timestamp2...]
每一条时间序列由指标名称(Metrics Name)以及一组标签(Labels)唯一标识。每条时间序列按照时间的先后顺序 存储一系列的样本值。
表示维度的标签可能来源于你的监控对象的状态,比如code=404或者content_path=/api/path。也可能来源于 的你的环境定义,比如environment=produment。基于这些Labels我们可以方便地对监控数据进行聚合,过滤, 裁剪。
强大的查询语言PromQL
Prometheus内置了一个强大的数据查询语言PromQL。 通过PromQL可以实现对监控数据的查询、聚合。同时 PromQL也被应用于数据可视化(如Grafana)以及告警当中。
通过PromQL可以轻松回答类似于以下问题:
高效
对于监控系统而言,大量的监控任务必然导致有大量的数据产生。而Prometheus可以高效地处理这些数据,对于单 一Prometheus Server实例而言它可以处理:
可扩展
Prometheus是如此简单,因此你可以在每个数据中心、每个团队运行独立的Prometheus Sevrer。Prometheus 对于联邦集群的支持,可以让多个Prometheus实例产生一个逻辑集群,当单实例Prometheus Server处理的任务 量过大时,通过使用功能分区(sharding)+联邦集群(federation)可以对其进行扩展。
易于集成
使用Prometheus可以快速搭建监控服务,并且可以非常方便地在应用程序中进行集成。目前支持: Java, JMX, Python, Go,Ruby, .Net, Node.js等等语言的客户端SDK,基于这些SDK可以快速让应用程序纳入到 Prometheus的监控当中,或者开发自己的监控数据收集程序。同时这些客户端收集的监控数据,不仅仅支持 Prometheus,还能支持Graphite这些其他的监控工具。
同时Prometheus还支持与其他的监控系统进行集成:Graphite, Statsd, Collected, Scollector, muini, Nagios等。
Prometheus社区还提供了大量第三方实现的监控数据采集支持:JMX, CloudWatch, EC2, MySQL, PostgresSQL, Haskell, Bash, SNMP, Consul, Haproxy, Mesos, Bind, CouchDB, Django, Memcached, RabbitMQ, Redis, RethinkDB, Rsyslog等等。
可视化
Prometheus Server中自带了一个Prometheus UI,通过这个UI可以方便地直接对数据进行查询,并且支持直接 以图形化的形式展示数据。同时Prometheus还提供了一个独立的基于Ruby On Rails的Dashboard解决方案 Promdash。最新的Grafana可视化工具也已经提供了完整的Prometheus支持,基于Grafana可以创建更加精美的 监控图标。基于Prometheus提供的API还可以实现自己的监控可视化UI。
开放性
通常来说当我们需要监控一个应用程序时,一般需要该应用程序提供对相应监控系统协议的支持。因此应用程序会与 所选择的监控系统进行绑定。为了减少这种绑定所带来的限制。对于决策者而言要么你就直接在应用中集成该监控系 统的支持,要么就在外部创建单独的服务来适配不同的监控系统。
而对于Prometheus来说,使用Prometheus的client library的输出格式不止支持Prometheus的格式化数据, 也可以输出支持其它监控系统的格式化数据,比如Graphite。
因此你甚至可以在不使用Prometheus的情况下,采用Prometheus的client library来让你的应用程序支持监控 数据采集。
Architecture
This diagram illustrates the architecture of Prometheus and some of its ecosystem components:
Prometheus是一个开放性的监控解决方案,用户可以非常方便的安装和使用Prometheus并且能够非常方便的对其 进行扩展。为了能够更加直观的了解Prometheus Server,接下来我们将在本地部署并运行一个Prometheus Server实例,通过Node Exporter采集当前主机的系统资源使用情况。 并通过Grafana创建一个简单的可视化仪 表盘。
Prometheus服务端以一个进程方式启动,如果不考虑参数和后台运行的话,只需要解压安装包之后运行./prometheus脚本即可启动,程序默认监听在9090端口。每次采集到的数据叫做metrics。这些采集到的数据会先存放在内存中,然后定期再写入硬盘,如果服务重新启动的话会将硬盘数据写回到内存中,所以对内存有一定消耗。Prometheus不需要重视历史数据,所以默认只会保留15天的数据。
Prometheus客户端分为pull和push两种方式。如果是pull形式的话则是服务端主动向客户端拉取数据,这样需要客户端上安装exporters(导出器)作为守护进程,官网上也提供了很多exporters可以下载使用,比如使用最多的node_exporters,几乎把系统自身相关数据全部采集了,非常全面,node_exporter默认监听9100端口。
如果是push形式的话客户端需要安装pushgateway插件,然后运需要运维人员用脚本把监控数据组织成键值形式提交给pushgateway,再由它提交给服务端。它适合于现有exporters无法满足需求时,自己灵活定制。
Gauges:最简单、使用最多的指标,获取一个返回值,这个返回值没有变化规律,不能肯定它一定是增长或是减少的状态,采集回来是多少就是多少。比如硬盘容量、CPU内存使用率都适合使用Gauges数据类型。
Counters:计数器。数据从0开始累计,理想状态下应该是永远增长或者是不变。适合统计机器开机时间、HTTP访问量
Histograms:和summary一样属于高级指标,用于统计数据的分布情况。比如最小值、最大值、中间值。这个类型不太好理解,比如说统计一天的日志,大部分用户响应时间都是正常的,只有少量用户异常,如果这个时候取平均值的话,这少量用户的异常情况就会被掩盖过去,而Histograms可以分别统计出全部用户的响应时间,比如0-1秒的用户有多少、1-2秒的用户有多少(其实有点像Kibana)
Prometheus基于Golang编写,编译后的软件包,不依赖于任何的第三方依赖。用户只需要下载对应平台的二进制 包,解压并且添加基本的配置即可正常启动Prometheus Server。
环境
安装
tar -xzvf prometheus-2.13.1.linux-amd64.tar.gz
mkdir /usr/local/prometheus
mv prometheus-2.13.1.linux-amd64 /usr/local/prometheus
创建数据目录
mkdir -p /data/prometheus/data
用户授权
useradd prometheus -s /sbin/nologin
chown -R prometheus:prometheus /usr/local/prometheus /data/prometheus
添加启动服务
$vim /usr/lib/systemd/system/prometheus.service
,配置如下:
[Unit]
Description=prometheus
After=network.target
[Service]
Type=simple
User=prometheus
ExecStart=/usr/local/prometheus/prometheus --config.file=/usr/local/prometheus/prometheus.yml --storage.tsdb.path=/data/prometheus/data
Restart=on-failure
ExecReload=/bin/kill -HUP $MAINPID
[Install]
WantedBy=multi-user.target
启动
systemctl daemon-reload
systemctl enable prometheus.service
systemctl start prometheus.service
验证
WEB地址:http://ip:9090
Prometheus可以在运行时重新加载其配置。如果新配置格式不正确,则更改将不会应用。通过向Prometheus进程发送SIGHUP或向/-/reload端点发送HTTP POST请求来触发配置重新加载(--web.enable-lifecycle启用该标志时)。这还将重新加载所有已配置的规则文件。
yaml文件书写的要求如下:
要指定要加载的配置文件,请使用该--config.file标志。
该文件以YAML格式写入,由以下所述的方案定义。方括号表示参数是可选的。对于非列表参数,该值设置为指定的默认值。
通用占位符定义如下:
<boolean>
:可以接受值的布尔值true或false<duration>
:与正则表达式匹配的持续时间 [0-9]+(ms|[smhdwy])<labelname>
:与正则表达式匹配的字符串 [a-zA-Z_][a-zA-Z0-9_]*<labelvalue>
:一串unicode字符<filename>
:当前工作目录中的有效路径<host>
:由主机名或IP后跟可选端口号组成的有效字符串<path>
:有效的网址路径<scheme>
:可以采用值http或https<string>
:常规字符串<secret>
:是秘密的常规字符串,例如密码<tmpl_string>
:使用前已模板扩展的字符串其他占位符分别指定。
在这里可以找到有效的示例文件。
全局配置指定在所有其他配置上下文中有效的参数。它们还用作其他配置部分的默认设置。
global:
# 默认情况下抓取目标的频率.
[ scrape_interval: <duration> | default = 1m ]
# 抓取超时时间.
[ scrape_timeout: <duration> | default = 10s ]
# 评估规则的频率.
[ evaluation_interval: <duration> | default = 1m ]
# 与外部系统通信时添加到任何时间序列或警报的标签
#(联合,远程存储,Alertma# nager).
external_labels:
[ <labelname>: <labelvalue> ... ]
# 规则文件指定了一个globs列表.
# 从所有匹配的文件中读取规则和警报.
rule_files:
[ - <filepath_glob> ... ]
# 抓取配置列表.
scrape_configs:
[ - <scrape_config> ... ]
# 警报指定与Alertmanager相关的设置.
alerting:
alert_relabel_configs:
[ - <relabel_config> ... ]
alertmanagers:
[ - <alertmanager_config> ... ]
# 与远程写入功能相关的设置.
remote_write:
[ - <remote_write> ... ]
# 与远程读取功能相关的设置.
remote_read:
[ - <remote_read> ... ]
(标签部分内容不是必须的,可以了解)
global:
scrape_interval: 15s #抓取数据的频率,默认15秒。该配置也可配置在每个job_name中
evaluation_interval: 15s #监控规则评估频率,比如设置了当内存使用大于70%发出报警的规则,然后每15秒来执行一次这个规则
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
scrape_configs:
- job_name: 'prometheus-server' #作业名,可以理解为组名,其下可以有多个实例配置
static_configs:
- targets: ['localhost:9090'] #节点的地址,可以写多个地址
# params: #过滤器
# collect[]:
# - cpu #只采集CPU数据
- job_name: 'www'
static_configs:
- targets: ['ip:9100','ip:9100']
labels: #自定义标签,可以通过标签进行统一管理
idc:beijing #增加一个idc标签,内容为beijing
#使用正则替换标签
- job_name: 'node'
static_configs:
- targets: ['ip:9100','ip:9100']
metric_relable_configs: #通过正则重命名标签
- action: replace #replace替换是默认动作。此外还有keep(只参加匹配标签的实例)、drop(不采集匹配正则的实例)、labelkeep\labeldrop(对标签进行过滤处理而非实例)等动作
source_labels: ['job'] #原标签,job是默认就会产生的标签,这里job标签的值是node
regex: (.*) #正则匹配,这里匹配job标签内的内容,也就是node
replacement: beijing #替换成什么内容,如果写$1就是将正则里的内容拿过来
target_label: idc #把替换到的内容赋值给idc标签
- action: labeldrop #删除标签
regex: job #把原有的job标签删除不显示
?
[sleepy↓]
?
原文:https://www.cnblogs.com/sunhongleibibi/p/11739377.html