/* 2-type B|D^k 3-type B|D-1 11-type B|D+1 6-type B质因子分解, 7-type 其他情况 3-type: (a*(D^4-1)+b*(D^3-1)+...+d*(D-1)) % B = 0 B|(D-1) 11-type: (a*(D^4-1)+b*(D^3+1)+c*(D^2-1)+d*(D^1+1)) % B=0 B|(D^k+(-1)^k) k为奇数时,D^k-1因式分解后必然有B|(D+1) k为偶数时,(D+1)(D^(k-1)-D^(k-2)+D^(k-3)...+1),也必有B|(D+1) 且对于任意的k,(D^k+(-1)^k)只有(D+1)这个公因子 */ #include<bits/stdc++.h> using namespace std; #define ll long long int prime[200],vis[200],m; void init(){ for(int i=2;i<=100;i++){ if(!vis[i])prime[++m]=i; for(int j=i;j<=100;j+=i) vis[j]=1; } } ll D,B;//D进制下,除数是B int k; int calc(ll B){ if((D-1)%B==0)return 3; if((D+1)%B==0)return 11; ll tmp=D; k=0; for(;tmp<=1e16;tmp*=D){//2^7 ++k; if(tmp%B==0)return 2; } return -1; } int main(){ init(); cin>>D>>B; int res=calc(B); if(res!=-1){ if(res==2){ cout<<"2-type"<<‘\n‘; cout<<k<<‘\n‘; return 0; } else if(res==3){ cout<<"3-type"<<‘\n‘; return 0; } else if(res==11){ cout<<"11-type"<<‘\n‘; return 0; } return 0; } for(int i=1;i<=m;i++) if(B%prime[i]==0){//每个质因子都要符合要求 ll tmp=1; while(B%prime[i]==0) B/=prime[i],tmp*=prime[i]; int res=calc(tmp); if(res==-1){ cout<<"7-type"<<‘\n‘; return 0; } } cout<<"6-type"<<‘\n‘; }
原文:https://www.cnblogs.com/zsben991126/p/11746118.html