首页 > 编程语言 > 详细

用R语言模拟随机服务排队系统

时间:2019-10-29 18:54:22      阅读:114      评论:0      收藏:0      [点我收藏+]

原文链接:http://tecdat.cn/?p=8159 

 

M / M / c / k系统

用肯德尔的表示法,M / M / c / k系统具有指数到达(M / M / c / k),cC具有指数服务时间(M / M / c / k)和k−c的服务器(M / M / c / k)?-C队列中的位置(M / M / c / k)。 

这是M / M / 2/3系统 的模拟。 

lambda <- 3
mu <- 4

m.queue <- trajectory() %>%
  seize("server", amount=1) %>%
  timeout(function() rexp(1, mu)) %>%
  release("server", amount=1)

mm23.env <- simmer() %>%
  add_resource("server", capacity=2, queue_size=1) %>%
  add_generator("arrival", m.queue, function() rexp(1, lambda)) %>%
  run(until=2000)
技术分享图片

队列已满时会有拒绝。

通过求解该系统的平衡方程,可以得出以下信息:

 

技术分享图片技术分享图片?

其中r=λ/μ[R=λ/μ。最后,我们可以看到模拟如何快速收敛到系统中的理论平均客户数Nñ:

技术分享图片技术分享图片?

 服务费率

在许多实际的排队方案中,服务器的速度取决于系统的状态。在这里,我们考虑一个多服务器资源,该资源能够在到达位置之间平均分配处理能力。这意味着,例如,如果capacity=2服务器中有一个服务器到达,则服务器的服务速度将提高一倍。

  •  start:到达开始最后一个timeout活动的模拟时间。
  • multiplier:分配处理能力。
  • delay:服务延迟应用于上一个timeout活动。

 

下面的主要轨迹首先抓住了服务器并初始化了这三个属性。然后,到达者需要遵循update.delay轨迹,并且必须在任何给定时间中断以重新运行它,从而重新计算剩余的服务时间。 

在下文中,我们将M / M / 2与该状态相关系统进行比较。这两个系统的到达时间相同,并且可以预期,平均资源使用量显着降低。

技术分享图片技术分享图片?

排队网络

 队列网络。

有三个指数生成器 注入平均大小为100字节的指数大小的消息。有四个M / D / 1队列,确定速率等于220字节/秒。来自λ的消息有25%的概率1个λ1个 在第二个队列之前删除 。 

我们将首先设置主要常量和几个函数来设置消息大小并占用M / D / 1队列:

下一步是 设置三个连接点:

最后,我们 运行仿真环境:


  run(4000)
#> simmer environment: anonymous | now: 4000 | next: 4000.27679472528
#> { Monitor: in memory }
#> { Resource: md1_1 | monitored: TRUE | server status: 1(1) | queue status: 4(Inf) }
#> { Resource: md1_2 | monitored: TRUE | server status: 1(1) | queue status: 4(Inf) }
#> { Resource: md1_3 | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
#> { Resource: md1_4 | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
#> { Source: arrival1_ | monitored: 2 | n_generated: 7994 }
#> { Source: arrival3_ | monitored: 2 | n_generated: 1959 }
#> { Source: arrival4_ | monitored: 2 | n_generated: 2390 }
技术分享图片

在分析中,我们将过滤来自生成器1的到达队列3和4的到达,并检查平均等待时间和消息总数:



aggregate(waiting_time ~ generator + resource, arr, function(x) sum(x)/length(x))
#>   generator resource waiting_time
#> 1  arrival1    md1_3    6.2313118
#> 2  arrival3    md1_3    0.7253215
#> 3  arrival1    md1_4    5.6431528
#> 4  arrival4    md1_4    0.5001096
get_n_generated(env, "arrival1_") + get_n_generated(env, "arrival4_")
#> [1] 10384
aggregate(waiting_time ~ generator + resource, arr, length)
#>   generator resource waiting_time
#> 1  arrival1    md1_3         3864
#> 2  arrival3    md1_3         1958
#> 3  arrival1    md1_4         2177
#> 4  arrival4    md1_4         2389
技术分享图片
 

 

如果您有任何疑问,请在下面发表评论。 

 

技术分享图片?

 

  

大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务

统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服

技术分享图片?技术分享图片QQ:3025393450

 

技术分享图片?QQ交流群:186388004 技术分享图片

【服务场景】  

科研项目; 公司项目外包;线上线下一对一培训;数据爬虫采集;学术研究;报告撰写;市场调查。

【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询

技术分享图片

欢迎选修我们的R语言数据分析挖掘必知必会课程!

技术分享图片

用R语言模拟随机服务排队系统

原文:https://www.cnblogs.com/tecdat/p/11760583.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!