首页 > 编程语言 > 详细

java源码--AbstractList

时间:2019-10-30 14:34:35      阅读:58      评论:0      收藏:0      [点我收藏+]
package java.util;


public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
    /**
     *唯一的构造函数。(对于子类构造函数的调用,通常是隐式的。)
     */
    protected AbstractList() {
    }

   //添加元素,调用add(size(), e)
    public boolean add(E e) {
        add(size(), e);
        return true;
    }

    /**
     * 唯一的抽象函数*/
    abstract public E get(int index);

    /**
     * 获取集合中的函数
     * {@code UnsupportedOperationException}.*/
    public E set(int index, E element) {
        throw new UnsupportedOperationException();
    }

    /**
     * 添加元素*/
    public void add(int index, E element) {
        throw new UnsupportedOperationException();
    }

    /**
     * 删除元素*/
    public E remove(int index) {
        throw new UnsupportedOperationException();
    }


    // Search Operations 搜索操作

    /**
     * 列表循环,找出元素第一次出现的位置*/
    public int indexOf(Object o) {
        ListIterator<E> it = listIterator();
        if (o==null) {
            while (it.hasNext())
                if (it.next()==null)
                    return it.previousIndex();
        } else {
            while (it.hasNext())
                if (o.equals(it.next()))
                    return it.previousIndex();
        }
        return -1;
    }

    /**
     * 列表循环,找出元素最后一次出现的位置*/
    public int lastIndexOf(Object o) {
        ListIterator<E> it = listIterator(size());
        if (o==null) {
            while (it.hasPrevious())
                if (it.previous()==null)
                    return it.nextIndex();
        } else {
            while (it.hasPrevious())
                if (o.equals(it.previous()))
                    return it.nextIndex();
        }
        return -1;
    }


    // Bulk Operations  批量操作

    /**
     * Removes all of the elements from this list (optional operation).*/
    public void clear() {
        removeRange(0, size());
    }

    /**
     * 集合中添加集合*/
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index); //效验index在范围之内 0< index < size()
        boolean modified = false;
        for (E e : c) { //循环添加
            add(index++, e);
            modified = true;
        }
        return modified;
    }


    // Iterators 迭代器

    /**
     * 按适当的顺序对列表中的元素返回一个迭代器。
     * @return an iterator over the elements in this list in proper sequence
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

public ListIterator<E> listIterator() { return listIterator(0); } /** * 此实现返回一个简单的实现,类的实现的扩展*/ public ListIterator<E> listIterator(final int index) { rangeCheckForAdd(index); //效验index在有效范围 return new ListItr(index); } private class Itr implements Iterator<E> { /** * 对next的后续调用将返回的元素的索引。 */ int cursor = 0; /** * 最近一次调用next时,在返回的元素的索引 * 之前的。如果此元素被调用删除,则重置为-1 */ int lastRet = -1; /** * 迭代器认为支持列表应该具有的modCount值。如果违背了这个期望,迭代器就会检测到并发修改 */ int expectedModCount = modCount;       

    //是否有下一个
public boolean hasNext() { return cursor != size(); } //返回当前元素,游标跳到下一个元素 public E next() { checkForComodification(); try { int i = cursor; E next = get(i); // 获取当前元素 lastRet = i; // 当前元素索引 cursor = i + 1; //游标指定下一个元素 return next; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.remove(lastRet); if (lastRet < cursor) cursor--; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { cursor = index; } public boolean hasPrevious() { return cursor != 0; } public E previous() { checkForComodification(); try { int i = cursor - 1; E previous = get(i); lastRet = cursor = i; return previous; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public int nextIndex() { return cursor; } public int previousIndex() { return cursor-1; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.set(lastRet, e); expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; AbstractList.this.add(i, e); lastRet = -1; cursor = i + 1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * {@inheritDoc} * * <p>This implementation returns a list that subclasses * {@code AbstractList}. The subclass stores, in private fields, the * offset of the subList within the backing list, the size of the subList * (which can change over its lifetime), and the expected * {@code modCount} value of the backing list. There are two variants * of the subclass, one of which implements {@code RandomAccess}. * If this list implements {@code RandomAccess} the returned list will * be an instance of the subclass that implements {@code RandomAccess}. * * <p>The subclass‘s {@code set(int, E)}, {@code get(int)}, * {@code add(int, E)}, {@code remove(int)}, {@code addAll(int, * Collection)} and {@code removeRange(int, int)} methods all * delegate to the corresponding methods on the backing abstract list, * after bounds-checking the index and adjusting for the offset. The * {@code addAll(Collection c)} method merely returns {@code addAll(size, * c)}. * * <p>The {@code listIterator(int)} method returns a "wrapper object" * over a list iterator on the backing list, which is created with the * corresponding method on the backing list. The {@code iterator} method * merely returns {@code listIterator()}, and the {@code size} method * merely returns the subclass‘s {@code size} field. * * <p>All methods first check to see if the actual {@code modCount} of * the backing list is equal to its expected value, and throw a * {@code ConcurrentModificationException} if it is not. * * @throws IndexOutOfBoundsException if an endpoint index value is out of range * {@code (fromIndex < 0 || toIndex > size)} * @throws IllegalArgumentException if the endpoint indices are out of order * {@code (fromIndex > toIndex)} */ public List<E> subList(int fromIndex, int toIndex) { return (this instanceof RandomAccess ? new RandomAccessSubList<>(this, fromIndex, toIndex) : new SubList<>(this, fromIndex, toIndex)); } // Comparison and hashing /** * Compares the specified object with this list for equality. Returns * {@code true} if and only if the specified object is also a list, both * lists have the same size, and all corresponding pairs of elements in * the two lists are <i>equal</i>. (Two elements {@code e1} and * {@code e2} are <i>equal</i> if {@code (e1==null ? e2==null : * e1.equals(e2))}.) In other words, two lists are defined to be * equal if they contain the same elements in the same order.<p> * * This implementation first checks if the specified object is this * list. If so, it returns {@code true}; if not, it checks if the * specified object is a list. If not, it returns {@code false}; if so, * it iterates over both lists, comparing corresponding pairs of elements. * If any comparison returns {@code false}, this method returns * {@code false}. If either iterator runs out of elements before the * other it returns {@code false} (as the lists are of unequal length); * otherwise it returns {@code true} when the iterations complete. * * @param o the object to be compared for equality with this list * @return {@code true} if the specified object is equal to this list */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof List)) return false; ListIterator<E> e1 = listIterator(); ListIterator<?> e2 = ((List<?>) o).listIterator(); while (e1.hasNext() && e2.hasNext()) { E o1 = e1.next(); Object o2 = e2.next(); if (!(o1==null ? o2==null : o1.equals(o2))) return false; } return !(e1.hasNext() || e2.hasNext()); } /** * Returns the hash code value for this list. * * <p>This implementation uses exactly the code that is used to define the * list hash function in the documentation for the {@link List#hashCode} * method. * * @return the hash code value for this list */ public int hashCode() { int hashCode = 1; for (E e : this) hashCode = 31*hashCode + (e==null ? 0 : e.hashCode()); return hashCode; } /** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) * * <p>This method is called by the {@code clear} operation on this list * and its subLists. Overriding this method to take advantage of * the internals of the list implementation can <i>substantially</i> * improve the performance of the {@code clear} operation on this list * and its subLists. * * <p>This implementation gets a list iterator positioned before * {@code fromIndex}, and repeatedly calls {@code ListIterator.next} * followed by {@code ListIterator.remove} until the entire range has * been removed. <b>Note: if {@code ListIterator.remove} requires linear * time, this implementation requires quadratic time.</b> * * @param fromIndex index of first element to be removed * @param toIndex index after last element to be removed */ protected void removeRange(int fromIndex, int toIndex) { ListIterator<E> it = listIterator(fromIndex); for (int i=0, n=toIndex-fromIndex; i<n; i++) { it.next(); it.remove(); } } /** * The number of times this list has been <i>structurally modified</i>. * Structural modifications are those that change the size of the * list, or otherwise perturb it in such a fashion that iterations in * progress may yield incorrect results. * * <p>This field is used by the iterator and list iterator implementation * returned by the {@code iterator} and {@code listIterator} methods. * If the value of this field changes unexpectedly, the iterator (or list * iterator) will throw a {@code ConcurrentModificationException} in * response to the {@code next}, {@code remove}, {@code previous}, * {@code set} or {@code add} operations. This provides * <i>fail-fast</i> behavior, rather than non-deterministic behavior in * the face of concurrent modification during iteration. * * <p><b>Use of this field by subclasses is optional.</b> If a subclass * wishes to provide fail-fast iterators (and list iterators), then it * merely has to increment this field in its {@code add(int, E)} and * {@code remove(int)} methods (and any other methods that it overrides * that result in structural modifications to the list). A single call to * {@code add(int, E)} or {@code remove(int)} must add no more than * one to this field, or the iterators (and list iterators) will throw * bogus {@code ConcurrentModificationExceptions}. If an implementation * does not wish to provide fail-fast iterators, this field may be * ignored. */ protected transient int modCount = 0; private void rangeCheckForAdd(int index) { if (index < 0 || index > size()) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size(); } } class SubList<E> extends AbstractList<E> { private final AbstractList<E> l; private final int offset; private int size; SubList(AbstractList<E> list, int fromIndex, int toIndex) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > list.size()) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); l = list; offset = fromIndex; size = toIndex - fromIndex; this.modCount = l.modCount; } public E set(int index, E element) { rangeCheck(index); checkForComodification(); return l.set(index+offset, element); } public E get(int index) { rangeCheck(index); checkForComodification(); return l.get(index+offset); } public int size() { checkForComodification(); return size; } public void add(int index, E element) { rangeCheckForAdd(index); checkForComodification(); l.add(index+offset, element); this.modCount = l.modCount; size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = l.remove(index+offset); this.modCount = l.modCount; size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); l.removeRange(fromIndex+offset, toIndex+offset); this.modCount = l.modCount; size -= (toIndex-fromIndex); } public boolean addAll(Collection<? extends E> c) { return addAll(size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); l.addAll(offset+index, c); this.modCount = l.modCount; size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); return new ListIterator<E>() { private final ListIterator<E> i = l.listIterator(index+offset); public boolean hasNext() { return nextIndex() < size; } public E next() { if (hasNext()) return i.next(); else throw new NoSuchElementException(); } public boolean hasPrevious() { return previousIndex() >= 0; } public E previous() { if (hasPrevious()) return i.previous(); else throw new NoSuchElementException(); } public int nextIndex() { return i.nextIndex() - offset; } public int previousIndex() { return i.previousIndex() - offset; } public void remove() { i.remove(); SubList.this.modCount = l.modCount; size--; } public void set(E e) { i.set(e); } public void add(E e) { i.add(e); SubList.this.modCount = l.modCount; size++; } }; } public List<E> subList(int fromIndex, int toIndex) { return new SubList<>(this, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } private void checkForComodification() { if (this.modCount != l.modCount) throw new ConcurrentModificationException(); } } class RandomAccessSubList<E> extends SubList<E> implements RandomAccess { RandomAccessSubList(AbstractList<E> list, int fromIndex, int toIndex) { super(list, fromIndex, toIndex); } public List<E> subList(int fromIndex, int toIndex) { return new RandomAccessSubList<>(this, fromIndex, toIndex); } }

 

java源码--AbstractList

原文:https://www.cnblogs.com/FondWang/p/11764231.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!