
10月30日,全球权威数据调研机构IDC正式发布《IDCMarketScape:
中国DevOps云市场2019,厂商评估》报告。京东云凭借丰富的场景和实践能力,以及高质量的服务交付和平台稳定性,取得优异出成绩,跻身“Major Players”(核心厂商)位置。
京东云DevOps能力起源于自身的业务实践,针对京东集团的复杂业务场景打造并经受住多次618、11.11电商大促的严峻考验,保证了高效高质的交付和对变化的灵活应对。能够支持复杂场景的自动化运维需求、实现工具链产品与平台化产品结合,帮助客户根据不同的需求灵活定制方案。
为了让大家更深入的理解devops,了解京东云devops具体的落地实践以及如何提升效率与保障稳定性,进一步结合自身业务设计实施devops。我们第一期将会重点为大家介绍DevOps中的监控部分,通过了解京东云自己的企业级监控是怎么来设计的,来更好地理解监控系统的样貌。
监控是运维的生命线,其目标是快速的发现问题、定位、止损(see->know->act),缩短异常MTTR,为了达到这个目标,期望监控系统具备:

介绍完监控目标和监控系统应该具备的功能点后,先不讨论监控系统如何实现,首先回答一个问题,如何确认监控加全了?有没有遗漏?
估计很多同学会遇到这样的问题,为此,京东云提出了一套监控标准,指导用户添加监控,确保监控“加全”,避免遗漏,详情如图所示。

监控标准分为四层,从下往上看:

了解了监控目标和定义了监控标准,相当于对解决的问题域有了一些背景知识了,下面就大概介绍下典型的监控系统包含哪些功能模块,本文只是做一个大概的介绍,后续会对不同模块方向有一些专门的介绍。
上图还是分为四层,从下往上我们依次来介绍:
最底层叫数据抽象层,大家可能看到了比较熟悉的词语是CMDB,这一层把资源视角抽象为运维&运营视角,比如你搭建了一个卖书的网站,用了nginx、mysql等程序,在资源视角,这是一台台机器运行在互联的idc环境上,但可以抽象成这是一个卖书的产品,有mysql、nginx等应用,这样你的监控数据自然可以附加这种属性(标签),最终在后续数据处理的时候可以发挥作用
有了数据抽象层,统一了我们对监控实体的认知,基于这个抽象;上一层就是数据采集层,这里列举了众多采集方式,包括进程、日志、自定义、接口pull、产生数据主动push等,整个数据采集,就是一个标准化的过程,把观测对象的数据通过各种手段收集上来,转换为我们监控系统定义的数据格式。
数据采集后,就是加工的过程,我们再回忆一下,监控的目标是发现、定位、解决问题;那么必须对数据做加工,这就又可以分为以下处理流:
数据处理之后,最终是让人去使用的,最上层就是数据的展示层,要展示对用户有效的数据,用户通过数据能快速发现定位问题,并通过数据分析及时做出止损操作。也就是要让数据更好的服务用户。
综上,我们可以了解到,监控系统是以数据为中心,在数据之上扩展其处理能力的一个系统;后续我们会对各个方向再进行深入的介绍,欢迎和各位进行交流。
IDC中国企业软件市场高级分析师王楠认为:“京东云DevOps能力源于自身业务实践,是京东技术能力输出的重要组成部分,尽管推出相对较晚,但发展速度快、成熟度高,工具链和平台功能已基本涵盖DevOps的主要流程阶段。同时,京东云DevOps平台还与公有云平台深度集成,不仅极大提升了服务交付效率和稳定性,还能高效助力用户的自动研发和运维。”
点击【京东云】可了解更多京东云DevOps产品内容。
欢迎点击“京东云”了解更多精彩内容。


原文:https://www.cnblogs.com/jdclouddeveloper/p/11772092.html