首页 > 其他 > 详细

celery框架

时间:2019-11-01 00:39:17      阅读:88      评论:0      收藏:0      [点我收藏+]

celery

1、celery框架自带socket,所以自身是一个独立运行的服务
2、启动celery服务,是来执行服务中的任务的,服务中带一个执行任务的对象,会执行准备就绪的任务,将执行任务的结果保存起来
3、celery框架由三部分组成:存放要执行的任务broker,执行任务的对象worker,存放任务结果的backend
4、安装的celery主体模块,默认只提供worker,要结合其他技术提供broker和backend(两个存储的单位)

celery架构

Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(backend  -  task result store)组成。

消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

使用场景

异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等

定时任务:定时执行某件事情,比如每天数据统计

celery的安装配置

pip install celery
消息中间件:RabbitMQ/Redis
app=celery.Celery(任务名, broker=xxx, backend=xxx, include=[xxx, xxx])

celery执行异步任务

celery包架构封装

project
    ├── celery_task      # celery包
    │   ├── __init__.py # 包文件
    │   ├── celery.py   # celery连接和配置相关文件,且名字必须交celery.py
    │   └── tasks.py    # 所有任务函数
    ├── add_task.py      # 添加任务
    └── get_result.py   # 获取结果

基本使用

celery.py

# 1)创建app + 任务

# 2)启动celery(app)服务:在pycharm中输入下面命令行启动,需要注意的是命令行启动的路径位置非windows命令:celery worker -A celery_task -l infowindows:pip3 install eventletcelery worker -A celery_task -l info -P eventlet

# 3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本

# 4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本


from celery import Celery

broker = redis://127.0.0.1:6379/1
backend = redis://127.0.0.1:6379/2
app = Celery(broker=broker, backend=backend, include=[celery_task.tasks])  #任务

tasks.py   存放任务函数的地方

from .celery import app
import time
@app.task
def add(n, m):
    print(n)
    print(m)
    time.sleep(10)
    print(n+m的结果:%s % (n + m))
    return n + m

@app.task
def low(n, m):
    print(n)
    print(m)
    print(n-m的结果:%s % (n - m))
    return n - m

add_task.py    添加任务的地方

from celery_task import tasks

# 添加立即执行任务
t1 = tasks.add.delay(10, 20)
t2 = tasks.low.delay(100, 50)
print(t1.id)


# 添加延迟任务
from datetime import datetime, timedelta
def eta_second(second):
    ctime = datetime.now()
    utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
    time_delay = timedelta(seconds=second)
    return utc_ctime + time_delay

tasks.low.apply_async(args=(200, 50), eta=eta_second(10))

get_result.py   获取结果的地方

from celery_task.celery import app

from celery.result import AsyncResult

id = 21325a40-9d32-44b5-a701-9a31cc3c74b5
if __name__ == __main__:
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print(任务失败)
    elif async.status == PENDING:
        print(任务等待中被执行)
    elif async.status == RETRY:
        print(任务异常后正在重试)
    elif async.status == STARTED:
        print(任务已经开始被执行)

高级使用    添加设置定时使用

celery.py

# 1)创建app + 任务

# 2)启动celery(app)服务:非windows命令:celery worker -A celery_task -l infowindows:pip3 install eventletcelery worker -A celery_task -l info -P eventlet

# 3)添加任务:自动添加任务,所以要启动一个添加任务的服务命令:celery beat -A celery_task -l info

# 4)获取结果


from celery import Celery

broker = redis://127.0.0.1:6379/1
backend = redis://127.0.0.1:6379/2
app = Celery(broker=broker, backend=backend, include=[celery_task.tasks])


# 时区
app.conf.timezone = Asia/Shanghai
# 是否使用UTC
app.conf.enable_utc = False

# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    low-task: {
        task: celery_task.tasks.low,
        schedule: timedelta(seconds=3),
        # ‘schedule‘: crontab(hour=8, day_of_week=1),  # 每周一早八点
        args: (300, 150),
    }
}

tasks.py

from .celery import app

import time
@app.task
def add(n, m):
    print(n)
    print(m)
    time.sleep(10)
    print(n+m的结果:%s % (n + m))
    return n + m


@app.task
def low(n, m):
    print(n)
    print(m)
    print(n-m的结果:%s % (n - m))
    return n - m

get_results.py

from celery_task.celery import app

from celery.result import AsyncResult

id = 21325a40-9d32-44b5-a701-9a31cc3c74b5
if __name__ == __main__:
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print(任务失败)
    elif async.status == PENDING:
        print(任务等待中被执行)
    elif async.status == RETRY:
        print(任务异常后正在重试)
    elif async.status == STARTED:
        print(任务已经开始被执行)

django中使用    和接口缓存机制配合使用,定时更新操作

celery.py

# 重点:要将 项目名.settings 所占的文件夹添加到环境变量
# import sys
# sys.path.append(r‘项目绝对路径‘)

# 开启django支持
import os
os.environ.setdefault(DJANGO_SETTINGS_MODULE, 项目名.settings)
import django
django.setup()



# 1)创建app + 任务

# 2)启动celery(app)服务:非windows命令:celery worker -A celery_task -l infowindows:pip3 install eventletcelery worker -A celery_task -l info -P eventlet

# 3)添加任务:自动添加任务,所以要启动一个添加任务的服务命令:celery beat -A celery_task -l info

# 4)获取结果


from celery import Celery

broker = redis://127.0.0.1:6379/1
backend = redis://127.0.0.1:6379/2
app = Celery(broker=broker, backend=backend, include=[celery_task.tasks])


# 时区
app.conf.timezone = Asia/Shanghai
# 是否使用UTC
app.conf.enable_utc = False

# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    django-task: {
        task: celery_task.tasks.test_django_celery,
        schedule: timedelta(seconds=3),
        args: (),
    }
}

tasks.py

from .celery import app

from home.models import Banner
from settings.const import BANNER_COUNT  # 轮播图最大显示条数
from home.serializers import BannerModelSerializer
from django.core.cache import cache
@app.task
def update_banner_list():
    # 获取最新内容
    banner_query = Banner.objects.filter(is_delete=False, is_show=True).order_by(-orders)[:BANNER_COUNT]
    # 序列化
    banner_data = BannerModelSerializer(banner_query, many=True).data
    for banner in banner_data:
        banner[image] = http://127.0.0.1:8000 + banner[image]
    # 更新缓存
    cache.set(banner_list, banner_data)
    return True

 

celery框架

原文:https://www.cnblogs.com/wangcuican/p/11774616.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!