数据dept表的准备:
--创建dept表 CREATE TABLE dept( deptno int, dname string, loc string) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,‘ STORED AS textfile;
数据文件准备:
vi detp.txt 10,ACCOUNTING,NEW YORK 20,RESEARCH,DALLAS 30,SALES,CHICAGO 40,OPERATIONS,BOSTON
数据表emp准备:
CREATE TABLE emp( empno int, ename string, job string, mgr int, hiredate string, sal int, comm int, deptno int) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,‘ STORED AS textfile;
表emp数据准备:
vi emp.txt 7369,SMITH,CLERK,7902,1980-12-17,800,null,20 7499,ALLEN,SALESMAN,7698,1981-02-20,1600,300,30 7521,WARD,SALESMAN,7698,1981-02-22,1250,500,30 7566,JONES,MANAGER,7839,1981-04-02,2975,null,20 7654,MARTIN,SALESMAN,7698,1981-09-28,1250,1400,30 7698,BLAKE,MANAGER,7839,1981-05-01,2850,null,30 7782,CLARK,MANAGER,7839,1981-06-09,2450,null,10 7788,SCOTT,ANALYST,7566,1987-04-19,3000,null,20 7839,KING,PRESIDENT,null,1981-11-17,5000,null,10 7844,TURNER,SALESMAN,7698,1981-09-08,1500,0,30 7876,ADAMS,CLERK,7788,1987-05-23,1100,null,20 7900,JAMES,CLERK,7698,1981-12-03,950,null,30 7902,FORD,ANALYST,7566,1981-12-02,3000,null,20 7934,MILLER,CLERK,7782,1982-01-23,1300,null,10
把数据文件装到表里
load data local inpath ‘/home/hadoop/tmp/dept.txt‘ overwrite into table dept; load data local inpath ‘/home/hadoop/tmp/emp.txt‘ overwrite into table emp;
查询语句
select d.dname,d.loc,e.empno,e.ename,e.hiredate from dept d join emp e on e.deptno = d.deptno ; * 可以看到走的是map reduce 程序
二、Hive分区
hive分区的目的
* hive为了避免全表扫描,从而引进分区技术来将数据进行划分。减少不必要数据的扫描,从而提高效率。
hive分区和mysql分区的区别
* mysql分区字段用的是表内字段;而hive分区字段采用表外字段。
hive的分区技术
* hive的分区字段是一个伪字段,但是可以用来进行操作。
* 分区字段不进行区分大小写
* 分区可以是表分区或者分区的分区,可以有多个分区
hive分区根据
* 看业务,只要是某个标识能把数据区分开来。比如:年、月、日、地域、性别等
分区关键字
* partitioned by(字段)
分区本质
* 在表的目录或者是分区的目录下在创建目录,分区的目录名为指定字段=值
创建分区表:
create table if not exists u1( id int, name string, age int ) partitioned by(dt string) row format delimited fields terminated by ‘ ‘
stored as textfile;
数据准备:
[hadoop@master tmp]$ more u1.txt 1 xm1 16 2 xm2 18 3 xm3 22
加载数据:
load data local inpath ‘/home/hadoop/tmp/u1.txt‘ into table u1 partition(dt="2018-10-14");
查询:
hive> select * from u1; OK 1 xm1 16 2018-10-14 2 xm2 18 2018-10-14 3 xm3 22 2018-10-14 Time taken: 5.919 seconds, Fetched: 3 row(s)
查询分区:
hive> select * from u1 where dt=‘2018-10-15‘; OK 1 xm1 16 2018-10-15 2 xm2 18 2018-10-15 3 xm3 22 2018-10-15 Time taken: 0.413 seconds, Fetched: 3 row(s)
Hive的二级分区
创建表u2
create table if not exists u2(id int,name string,age int) partitioned by(month int,day int) row format delimited fields terminated by ‘ ‘ stored as textfile;
导入数据:
load data local inpath ‘/home/hadoop/tmp/u2.txt‘ into table u2 partition(month=9,day=14);
数据查询:
hive> select * from u2; OK 1 xm1 16 9 14 2 xm2 18 9 14 Time taken: 0.303 seconds, Fetched: 2 row(s)
分区修改:
查看分区:
hive> show partitions u1;
OK
dt=2018-10-14
dt=2018-10-15
增加分区:
> alter table u1 add partition(dt="2018-10-16"); OK
查看新增加的分区:
hive> show partitions u1; OK dt=2018-10-14 dt=2018-10-15 dt=2018-10-16 Time taken: 0.171 seconds, Fetched: 3 row(s)
删除分区:
hive> alter table u1 drop partition(dt="2018-10-15"); Dropped the partition dt=2018-10-15 OK Time taken: 0.576 seconds hive> select * from u1 ; OK 1 xm1 16 2018-10-14 2 xm2 18 2018-10-14 3 xm3 22 2018-10-14 Time taken: 0.321 seconds, Fetched: 3 row(s)
三、hive动态分区
hive配置文件hive-site.xml 文件里有配置参数:
hive.exec.dynamic.partition=true; 是否允许动态分区 hive.exec.dynamic.partition.mode=strict/nostrict; 动态区模式为严格模式 ? strict: 严格模式,最少需要一个静态分区列(需指定固定值) ? nostrict:非严格模式,允许所有的分区字段都为动态。 hive.exec.max.dynamic.partitions=1000; 允许最大的动态分区 hive.exec.max.dynamic.partitions.pernode=100; 单个节点允许最大分区
动态分区表的创建语句与静态分区表相同,不同之处在与导入数据,静态分区表可以从本地文件导入,但是动态分区表需要使用from…insert into语句导入。
create table if not exists u3(id int,name string,age int) partitioned by(month int,day int)
row format delimited fields terminated by ‘ ‘ stored as textfile;
导入数据,将u2表中的数据加载到u3中:
from u2 insert into table u3 partition(month,day) select id,name,age,month,day;
FAILED: SemanticException [Error 10096]: Dynamic partition strict mode requires at least one static partition column. To turn this off set hive.exec.dynamic.partition.mode=nonstrict
解决方法:
要动态插入分区必需设置hive.exec.dynamic.partition.mode=nonstrict
hive> set hive.exec.dynamic.partition.mode;
hive.exec.dynamic.partition.mode=strict
hive> set hive.exec.dynamic.partition.mode=nonstrict;
然后再次插入就可以了
查询:
hive> select * from u3; OK 1 xm1 16 9 14 2 xm2 18 9 14 Time taken: 0.451 seconds, Fetched: 2 row(s)
hive分桶
分桶目的作用
* 更加细致地划分数据;对数据进行抽样查询,较为高效;可以使查询效率提高
* 记住,分桶比分区,更高的查询效率。
分桶原理关键字
* 分桶字段是表内字段,默认是对分桶的字段进行hash值,然后再模于总的桶数,得到的值则是分区桶数。每个桶中都有数据,但每个桶中的数据条数不一定相等。
bucket
clustered by(id) into 4 buckets
分桶的本质
* 在表目录或者分区目录中创建文件。
分桶案例
* 分四个桶
create table if not exists u4(id int, name string, age int) partitioned by(month int,day int) clustered by(id) into 4 buckets row format delimited fields terminated by ‘ ‘ stored as textfile;
对分桶的数据不能使用load的方式加载数据,使用load方式加载不会报错,但是没有分桶的效果。
为分桶表添加数据,需要设置set hive.enforce.bucketing=true;
首先将数据添加到u2表中
1 xm1 16 2 xm2 18 3 xm3 22 4 xh4 20 5 xh5 22 6 xh6 23 7 xh7 25 8 xh8 28 9 xh9 32
load data local inpath ‘/home/hadoop/tmp/u2.txt‘ into table u2 partition(month=9,day=14);
加载到桶表中:
from u2 insert into table u4 partition(month=9,day=14) select id,name,age where month = 9 and day = 14;
2019-03-31 15:43:26,755 Stage-1 map = 0%, reduce = 0% 2019-03-31 15:43:34,241 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.85 sec 2019-03-31 15:43:41,681 Stage-1 map = 100%, reduce = 25%, Cumulative CPU 1.95 sec 2019-03-31 15:43:45,855 Stage-1 map = 100%, reduce = 50%, Cumulative CPU 3.21 sec 2019-03-31 15:43:47,927 Stage-1 map = 100%, reduce = 75%, Cumulative CPU 4.35 sec 2019-03-31 15:43:48,959 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 5.35 sec MapReduce Total cumulative CPU time: 5 seconds 350 msec Ended Job = job_1554061731326_0001 Loading data to table db_hive.u4 partition (month=9, day=14) MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 4 Cumulative CPU: 5.35 sec HDFS Read: 20301 HDFS Write: 405 SUCCESS Total MapReduce CPU Time Spent: 5 seconds 350 msec
加载日志可以看到有:Map: 1 Reduce: 4
对分桶进行查询:tablesample(bucket x out of y on id)
* x:表示从哪个桶开始查询
* y:表示桶的总数,一般为桶的总数的倍数或者因子。
* x不能大于y。
hive> select * from u4; OK 8 xh8 28 9 14 4 xh4 20 9 14 9 xh9 32 9 14 5 xh5 22 9 14 1 xm1 16 9 14 6 xh6 23 9 14 2 xm2 18 9 14 7 xh7 25 9 14 3 xm3 22 9 14 Time taken: 0.148 seconds, Fetched: 9 row(s)
> select * from u4 tablesample(bucket 1 out of 4 on id); OK 8 xh8 28 9 14 4 xh4 20 9 14 Time taken: 0.149 seconds, Fetched: 2 row(s) hive> select * from u4 tablesample(bucket 2 out of 4 on id); OK 9 xh9 32 9 14 5 xh5 22 9 14 1 xm1 16 9 14 Time taken: 0.069 seconds, Fetched: 3 row(s) hive> select * from u4 tablesample(bucket 1 out of 2 on id); OK 8 xh8 28 9 14 4 xh4 20 9 14 6 xh6 23 9 14 2 xm2 18 9 14 Time taken: 0.089 seconds, Fetched: 4 row(s) hive> select * from u4 tablesample(bucket 1 out of 8 on id) where age > 22; OK 8 xh8 28 9 14 Time taken: 0.075 seconds, Fetched: 1 row(s)
随机查询:
select * from u4 order by rand() limit 3;
OK
1 xm1 16 9 14
3 xm3 22 9 14
6 xh6 23 9 14
Time taken: 20.724 seconds, Fetched: 3 row(s) --走map reduce任务
> select * from u4 tablesample(3 rows); OK 8 xh8 28 9 14 4 xh4 20 9 14 9 xh9 32 9 14 Time taken: 0.073 seconds, Fetched: 3 row(s)
hive> select * from u4 tablesample(30 percent); OK 8 xh8 28 9 14 4 xh4 20 9 14 9 xh9 32 9 14 Time taken: 0.058 seconds, Fetched: 3 row(s)
> select * from u4 tablesample(3G); OK 8 xh8 28 9 14 4 xh4 20 9 14 9 xh9 32 9 14 5 xh5 22 9 14 1 xm1 16 9 14 6 xh6 23 9 14 2 xm2 18 9 14 7 xh7 25 9 14 3 xm3 22 9 14 Time taken: 0.069 seconds, Fetched: 9 row(s)
hive> select * from u4 tablesample(3K); OK 8 xh8 28 9 14 4 xh4 20 9 14 9 xh9 32 9 14 5 xh5 22 9 14 1 xm1 16 9 14 6 xh6 23 9 14 2 xm2 18 9 14 7 xh7 25 9 14 3 xm3 22 9 14 Time taken: 0.058 seconds, Fetched: 9 row(s)
原文:https://www.cnblogs.com/xibuhaohao/p/11775677.html