二叉树:树的每个节点最多只能有两个子节点
上图的第一幅图B节点有DEF三个子节点,就不是二叉树,称为多路树;而第二幅图每个节点最多只有两个节点,是二叉树,并且二叉树的子节点称为“左子节点”和“右子节点”。上图的D,E分别是B的左子节点和右子节点。
如果我们给二叉树加一个额外的条件,就可以得到一种被称作二叉搜索树(binary search tree)的特殊二叉树。
二叉搜索树要求:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
/** * hash * @param key * @return */ private static <k> int getHashCode(k key){ int h; //生成的hash值的随机性会增大 return (h = key.hashCode()) ^ (h >>> 16); } Node root; class Node <k,v>{ private k key; private v value; private int hasKey; //节点数据 private Node leftChild; //左子节点的引用 private Node rightChild; //右子节点的引用 private int isDelete = 0; //是否删除 public Node(int hasKey,k key,v value){ this.hasKey = hasKey; this.key = key; this.value = value; } } /** * 查找节点 * @param key * @return */ public Node find(Object key){ int hashKey = getHashCode(key); if (root==null){ return root; } Node curr = root; while (curr!=null){ if (curr.hasKey==hashKey){ return curr; }else if (curr.hasKey>hashKey){ curr = curr.leftChild; }else { curr = curr.rightChild; } } return null; } /** * 插入新节点 * @param key * @param value * @return */ public Node insert(Object key,Object value){ int hashKey = getHashCode(key); Node newNode = new Node(hashKey,key,value); if (root==null){ root = newNode; return newNode; } Node curr = root; while (curr!=null){ Node parentNode = curr; if (curr.hasKey>hashKey){ curr = curr.leftChild; if (curr==null){ parentNode.leftChild = newNode; } }else { curr = curr.rightChild; if (curr==null){ parentNode.rightChild = newNode; } } } return newNode; } /** * 删除节点 * @param key * @return Node */ public Node delete(int key){ int hashKey = getHashCode(key); Node curr = root; while (curr!=null){ if (curr.hasKey==hashKey){ curr.isDelete=1; return curr; }else if (curr.hasKey>hashKey){ curr = curr.leftChild; }else { curr = curr.rightChild; } } return null; }
原文:https://www.cnblogs.com/wushenghfut/p/11776142.html