在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri?li,即等于它的右端点的值减去左端点的值。
求所有合法方案中最小的花费。如果不存在合法的方案,输出 ?1
第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n
接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。
N<=500000,M<=200000,0≤li≤ri≤10^9
只有一行,包含一个正整数,即最小花费。
按照区间长度排序,把区间端点离散化.
这样做不影响答案,我们也可以更加方便处理
线段树区间维护最大值就解决了
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e6+10,inf=1<<30;
#define int long long
#define ls (p<<1)
#define rs (p<<1)|1
struct node{
int l,r,sum,add;
#define l(x) tree[x].l
#define r(x) tree[x].r
#define sum(x) tree[x].sum
#define add(x) tree[x].add
}tree[4*N];
#define mid ((l(p)+r(p))>>1)
inline void pushdown(int p){
add(ls)+=add(p);
add(rs)+=add(p);
sum(ls)+=add(p);
sum(rs)+=add(p);
add(p)=0;
}
inline void build(int p,int l,int r){
l(p)=l,r(p)=r;
if(l==r)return;
build(ls,l,mid);
build(rs,mid+1,r);
}
inline int ask(int p,int l,int r){
if(l<=l(p)&&r(p)<=r)return sum(p);
int ans=0;
if(add(p))pushdown(p);
if(l<=mid)ans=max(ans,ask(ls,l,r));
if(r>mid)ans=max(ans,ask(rs,l,r));
return ans;
}
inline void change(int p,int l,int r,int d){
if(l<=l(p)&&r(p)<=r){sum(p)+=d;add(p)+=d;return;}
if(add(p))pushdown(p);
if(l<=mid)change(ls,l,r,d);
if(r>mid)change(rs,l,r,d);
sum(p)=max(sum(ls),sum(rs));
}
struct E{
int l,r,len;
}e[N];
bool cmp(E t1,E t2){return t1.len<t2.len;}
int A[N],n,m;
signed main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
scanf("%lld%lld",&e[i].l,&e[i].r);
e[i].len=e[i].r-e[i].l;
A[i]=e[i].l;
A[i+n]=e[i].r;
}
sort(A+1,A+1+2*n);sort(e+1,e+1+n,cmp);
int len=unique(A+1,A+1+2*n)-A-1;
for(int i=1;i<=n;i++){
e[i].l=lower_bound(A+1,A+1+len,e[i].l)-A;
e[i].r=lower_bound(A+1,A+1+len,e[i].r)-A;
}
build(1,1,2*n);
int l=1,r=0,ans=inf;
while(r<n){
while(r<n&&sum(1)<m){++r;change(1,e[r].l,e[r].r,1);}
if(sum(1)<m)break;int tmp;
while(sum(1)>=m)tmp=e[l].len,change(1,e[l].l,e[l].r,-1),++l;
ans=min(ans,e[r].len-tmp);
}
printf("%lld\n",ans==inf?-1:ans);
}
原文:https://www.cnblogs.com/naruto-mzx/p/11779535.html