首页 > 其他 > 详细

np.squeeze函数和np.newaxis的区别和联系

时间:2019-11-03 21:13:37      阅读:83      评论:0      收藏:0      [点我收藏+]

np.squeeze()函数
语法:numpy.squeeze(a,axis = None)

 1)a表示输入的数组;
 2)axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
 3)axis的取值可为None 或 int 或 tuple of ints, 可选。若axis为空,则删除所有单维度的条目;
 4)返回值:数组
 5) 不会修改原数组;

作用:从数组的形状中删除单维度条目,即把shape中为1的维度去掉

np.newaxis函数
作用:在这一位置增加一个一维,这一位置指的是np.newaxis所在的位置

例子一:

x1 = np.array([1, 2, 3, 4, 5])
# the shape of x1 is (5,)
x1_new = x1[:, np.newaxis]
# now, the shape of x1_new is (5, 1)
# array([[1],
#        [2],
#        [3],
#        [4],
#        [5]])
x1_new = x1[np.newaxis,:]
# now, the shape of x1_new is (1, 5)
# array([[1, 2, 3, 4, 5]])
例子二:
In [124]: arr = np.arange(5*5).reshape(5,5)

In [125]: arr.shape
Out[125]: (5, 5)

# promoting 2D array to a 5D array
In [126]: arr_5D = arr[np.newaxis, ..., np.newaxis, np.newaxis]

In [127]: arr_5D.shape
Out[127]: (1, 5, 5, 1, 1)
 

np.squeeze函数和np.newaxis的区别和联系

原文:https://www.cnblogs.com/dtpromise/p/11788986.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!