代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf(‘\n***********************************************************\n‘); fprintf(‘ <DSP using MATLAB> Problem 8.42 \n\n‘); banner(); %% ------------------------------------------------------------------------ % Digital Filter Specifications: Elliptic bandstop wsbs = [0.40*pi 0.48*pi]; % digital stopband freq in rad wpbs = [0.25*pi 0.75*pi]; % digital passband freq in rad Rp = 1.0 % passband ripple in dB As = 80 % stopband attenuation in dB Ripple = 10 ^ (-Rp/20) % passband ripple in absolute Attn = 10 ^ (-As/20) % stopband attenuation in absolute % Calculation of Elliptic filter parameters: [N, wn] = ellipord(wpbs/pi, wsbs/pi, Rp, As); fprintf(‘\n ********* Elliptic Filter Order is = %3.0f \n‘, N) % Digital Elliptic bandstop Filter Design: [bbs, abs] = ellip(N, Rp, As, wn, ‘stop‘); [C, B, A] = dir2cas(bbs, abs) % Calculation of Frequency Response: [dbbs, magbs, phabs, grdbs, wwbs] = freqz_m(bbs, abs); % --------------------------------------------------------------- % find Actual Passband Ripple and Min Stopband attenuation % --------------------------------------------------------------- delta_w = 2*pi/1000; Rp_bs = -(min(dbbs(1:1:ceil(wpbs(1)/delta_w+1)))); % Actual Passband Ripple fprintf(‘\nActual Passband Ripple is %.4f dB.\n‘, Rp_bs); As_bs = -round(max(dbbs(ceil(wsbs(1)/delta_w)+1:1:ceil(wsbs(2)/delta_w)+1))); % Min Stopband attenuation fprintf(‘\nMin Stopband attenuation is %.4f dB.\n\n‘, As_bs); %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 Elliptic bs by ellip function‘) set(gcf,‘Color‘,‘white‘); M = 1; % Omega max subplot(2,2,1); plot(wwbs/pi, magbs); axis([0, M, 0, 1.2]); grid on; xlabel(‘Digital frequency in \pi units‘); ylabel(‘|H|‘); title(‘Magnitude Response‘); set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]); set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [0, 0.01, 0.8913, 1]); subplot(2,2,2); plot(wwbs/pi, dbbs); axis([0, M, -120, 2]); grid on; xlabel(‘Digital frequency in \pi units‘); ylabel(‘Decibels‘); title(‘Magnitude in dB‘); set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]); set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [ -80, -40, 0]); set(gca,‘YTickLabelMode‘,‘manual‘,‘YTickLabel‘,[‘80‘; ‘40‘;‘ 0‘]); subplot(2,2,3); plot(wwbs/pi, phabs/pi); axis([0, M, -1.1, 1.1]); grid on; xlabel(‘Digital frequency in \pi nuits‘); ylabel(‘radians in \pi units‘); title(‘Phase Response‘); set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]); set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [-1:0.5:1]); subplot(2,2,4); plot(wwbs/pi, grdbs); axis([0, M, 0, 50]); grid on; xlabel(‘Digital frequency in \pi units‘); ylabel(‘Samples‘); title(‘Group Delay‘); set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]); set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [0:20:50]); % ------------------------------------------------------------ % PART 2 % ------------------------------------------------------------ % Discrete time signal Ts = 1; % sample intevals n1_start = 0; n1_end = 200; n1 = [n1_start:n1_end]; % [0:200] xn1 = sin(0.44*pi*n1); % digital signal % ---------------------------- % DTFT of xn1 % ---------------------------- M = 500; [X1, w] = dtft1(xn1, n1, M); %magX1 = abs(X1); angX1 = angle(X1); realX1 = real(X1); imagX1 = imag(X1); magX1 = sqrt(realX1.^2 + imagX1.^2); %% -------------------------------------------------------------------- %% START X(w)‘s mag ang real imag %% -------------------------------------------------------------------- figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 X1 DTFT‘); set(gcf,‘Color‘,‘white‘); subplot(2,1,1); plot(w/pi,magX1); grid on; %axis([-1,1,0,1.05]); title(‘Magnitude Response‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Magnitude |H|‘); set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.2, 0.44, 0.6, 0.8, 1.0, 1.2, 1.4, 1.56, 1.8, 2]); subplot(2,1,2); plot(w/pi, angX1/pi); grid on; %axis([-1,1,-1.05,1.05]); title(‘Phase Response‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Radians/\pi‘); figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 X1 DTFT‘); set(gcf,‘Color‘,‘white‘); subplot(2,1,1); plot(w/pi, realX1); grid on; title(‘Real Part‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Real‘); set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.2, 0.44, 0.6, 0.8, 1.0, 1.2, 1.4, 1.56, 1.8, 2]); subplot(2,1,2); plot(w/pi, imagX1); grid on; title(‘Imaginary Part‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Imaginary‘); %% ------------------------------------------------------------------- %% END X‘s mag ang real imag %% ------------------------------------------------------------------- % ------------------------------------------------------------ % PART 3 % ------------------------------------------------------------ yn1 = filter(bbs, abs, xn1); n2 = n1; % ---------------------------- % DTFT of yn1 % ---------------------------- M = 500; [Y1, w] = dtft1(yn1, n2, M); %magY1 = abs(Y1); angY1 = angle(Y1); realY1 = real(Y1); imagY1 = imag(Y1); magY1 = sqrt(realY1.^2 + imagY1.^2); %% -------------------------------------------------------------------- %% START Y1(w)‘s mag ang real imag %% -------------------------------------------------------------------- figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 Y1 DTFT‘); set(gcf,‘Color‘,‘white‘); subplot(2,1,1); plot(w/pi,magY1); grid on; %axis([-1,1,0,1.05]); title(‘Magnitude Response‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Magnitude |H|‘); subplot(2,1,2); plot(w/pi, angY1/pi); grid on; %axis([-1,1,-1.05,1.05]); title(‘Phase Response‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Radians/\pi‘); figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 Y1 DTFT‘); set(gcf,‘Color‘,‘white‘); subplot(2,1,1); plot(w/pi, realY1); grid on; title(‘Real Part‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Real‘); subplot(2,1,2); plot(w/pi, imagY1); grid on; title(‘Imaginary Part‘); xlabel(‘digital frequency in \pi units‘); ylabel(‘Imaginary‘); %% ------------------------------------------------------------------- %% END Y1‘s mag ang real imag %% ------------------------------------------------------------------- figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 x(n) and y(n)‘) set(gcf,‘Color‘,‘white‘); subplot(2,1,1); stem(n1, xn1); xlabel(‘n‘); ylabel(‘x(n)‘); title(‘xn sequence‘); grid on; subplot(2,1,2); stem(n1, yn1); xlabel(‘n‘); ylabel(‘y(n)‘); title(‘yn sequence‘); grid on;
运行结果:
我自己假设通带1dB,阻带衰减80dB。
在此基础上设计指标,绝对单位,
ellip函数(MATLAB工具箱函数)得到Elliptic带阻滤波器,阶数为5,系统函数串联形式系数如下图。
要想得到题目中的10阶的话,阻带衰减估计需要达到160dB左右,觉得没必要那么大。
Elliptic带阻滤波器,幅度谱、相位谱和群延迟响应
输入离散时间信号x(n)的谱如下,可看出,频率分量0.44π
通过带阻滤波器后,得到的输出y(n)的谱,好像变乱了,o(╥﹏╥)o
输入和输出的离散时间序列如下图
《DSP using MATLAB》Problem 8.42
原文:https://www.cnblogs.com/ky027wh-sx/p/11808896.html