首页 > 其他 > 详细

《DSP using MATLAB》Problem 8.42

时间:2019-11-06 22:19:42      阅读:129      评论:0      收藏:0      [点我收藏+]

技术分享图片

代码:

%% ------------------------------------------------------------------------
%%            Output Info about this m-file
fprintf(‘\n***********************************************************\n‘);
fprintf(‘        <DSP using MATLAB> Problem 8.42 \n\n‘);

banner();
%% ------------------------------------------------------------------------

% Digital Filter Specifications:   Elliptic bandstop
wsbs = [0.40*pi 0.48*pi];             % digital stopband freq in rad
wpbs = [0.25*pi 0.75*pi];             % digital passband freq in rad

Rp = 1.0    % passband ripple in dB
As = 80      % stopband attenuation in dB                       

Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
Attn = 10 ^ (-As/20)             % stopband attenuation in absolute

% Calculation of Elliptic filter parameters:

[N, wn] = ellipord(wpbs/pi, wsbs/pi, Rp, As);

fprintf(‘\n  ********* Elliptic Filter Order is = %3.0f \n‘, N)

% Digital Elliptic bandstop Filter Design:
[bbs, abs] = ellip(N, Rp, As, wn, ‘stop‘);

[C, B, A] = dir2cas(bbs, abs)

% Calculation of Frequency Response:
[dbbs, magbs, phabs, grdbs, wwbs] = freqz_m(bbs, abs);

% ---------------------------------------------------------------
%    find Actual Passband Ripple and Min Stopband attenuation
% ---------------------------------------------------------------
delta_w = 2*pi/1000;
Rp_bs = -(min(dbbs(1:1:ceil(wpbs(1)/delta_w+1))));                           % Actual Passband Ripple

fprintf(‘\nActual Passband Ripple is %.4f dB.\n‘, Rp_bs);

As_bs = -round(max(dbbs(ceil(wsbs(1)/delta_w)+1:1:ceil(wsbs(2)/delta_w)+1)));   % Min Stopband attenuation
fprintf(‘\nMin Stopband attenuation is %.4f dB.\n\n‘, As_bs);


%% -----------------------------------------------------------------
%%                             Plot
%% -----------------------------------------------------------------  

figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 Elliptic bs by ellip function‘)
set(gcf,‘Color‘,‘white‘); 
M = 1;                          % Omega max

subplot(2,2,1); plot(wwbs/pi, magbs); axis([0, M, 0, 1.2]); grid on;
xlabel(‘Digital frequency in \pi units‘); ylabel(‘|H|‘); title(‘Magnitude Response‘);
set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]);
set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [0, 0.01, 0.8913, 1]);

subplot(2,2,2); plot(wwbs/pi, dbbs); axis([0, M, -120, 2]); grid on;
xlabel(‘Digital frequency in \pi units‘); ylabel(‘Decibels‘); title(‘Magnitude in dB‘);
set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]);
set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [ -80, -40, 0]);
set(gca,‘YTickLabelMode‘,‘manual‘,‘YTickLabel‘,[‘80‘; ‘40‘;‘ 0‘]);


subplot(2,2,3); plot(wwbs/pi, phabs/pi); axis([0, M, -1.1, 1.1]); grid on;
xlabel(‘Digital frequency in \pi nuits‘); ylabel(‘radians in \pi units‘); title(‘Phase Response‘);
set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]);
set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [-1:0.5:1]);

subplot(2,2,4); plot(wwbs/pi, grdbs); axis([0, M, 0, 50]); grid on;
xlabel(‘Digital frequency in \pi units‘); ylabel(‘Samples‘); title(‘Group Delay‘);
set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.25, 0.40, 0.48, 0.75, M]);
set(gca, ‘YTickMode‘, ‘manual‘, ‘YTick‘, [0:20:50]);


% ------------------------------------------------------------
%                 PART 2   
% ------------------------------------------------------------

% Discrete time signal
Ts = 1;                              % sample intevals
n1_start = 0; n1_end = 200;
      n1 = [n1_start:n1_end];        % [0:200]

xn1 = sin(0.44*pi*n1);               % digital signal


% ----------------------------
%       DTFT of xn1
% ----------------------------
M = 500;
[X1, w] = dtft1(xn1, n1, M);

%magX1 = abs(X1);  
angX1  = angle(X1);  realX1  = real(X1);  imagX1  = imag(X1);
magX1 = sqrt(realX1.^2 + imagX1.^2);

%% --------------------------------------------------------------------
%%              START X(w)‘s  mag ang real imag
%% --------------------------------------------------------------------
figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 X1 DTFT‘);
set(gcf,‘Color‘,‘white‘); 
subplot(2,1,1); plot(w/pi,magX1); grid on;  %axis([-1,1,0,1.05]); 
title(‘Magnitude Response‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Magnitude  |H|‘); 
set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.2, 0.44, 0.6, 0.8, 1.0, 1.2, 1.4, 1.56, 1.8, 2]);

subplot(2,1,2); plot(w/pi, angX1/pi); grid on;  %axis([-1,1,-1.05,1.05]);
title(‘Phase Response‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Radians/\pi‘);

figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 X1 DTFT‘);
set(gcf,‘Color‘,‘white‘); 
subplot(2,1,1); plot(w/pi, realX1); grid on;
title(‘Real Part‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Real‘);
set(gca, ‘XTickMode‘, ‘manual‘, ‘XTick‘, [0, 0.2, 0.44, 0.6, 0.8, 1.0, 1.2, 1.4, 1.56, 1.8, 2]);

subplot(2,1,2); plot(w/pi, imagX1); grid on;
title(‘Imaginary Part‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Imaginary‘);
%% -------------------------------------------------------------------
%%             END X‘s  mag ang real imag
%% -------------------------------------------------------------------



% ------------------------------------------------------------
%                 PART 3  
% ------------------------------------------------------------
yn1 = filter(bbs, abs, xn1);
n2 = n1;

% ----------------------------
%       DTFT of yn1
% ----------------------------
M = 500;
[Y1, w] = dtft1(yn1, n2, M);

%magY1  = abs(Y1);  
angY1  = angle(Y1);  realY1  = real(Y1);  imagY1  = imag(Y1);
magY1 = sqrt(realY1.^2 + imagY1.^2);

%% --------------------------------------------------------------------
%%              START Y1(w)‘s  mag ang real imag
%% --------------------------------------------------------------------
figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 Y1 DTFT‘);
set(gcf,‘Color‘,‘white‘); 
subplot(2,1,1); plot(w/pi,magY1); grid on;  %axis([-1,1,0,1.05]); 
title(‘Magnitude Response‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Magnitude  |H|‘); 
subplot(2,1,2); plot(w/pi, angY1/pi); grid on;  %axis([-1,1,-1.05,1.05]);
title(‘Phase Response‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Radians/\pi‘);

figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 Y1 DTFT‘);
set(gcf,‘Color‘,‘white‘); 
subplot(2,1,1); plot(w/pi, realY1); grid on;
title(‘Real Part‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Real‘);
subplot(2,1,2); plot(w/pi, imagY1); grid on;
title(‘Imaginary Part‘);
xlabel(‘digital frequency in \pi units‘); ylabel(‘Imaginary‘);
%% -------------------------------------------------------------------
%%             END Y1‘s  mag ang real imag
%% -------------------------------------------------------------------


figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 8.42 x(n) and y(n)‘)
set(gcf,‘Color‘,‘white‘); 
subplot(2,1,1); stem(n1, xn1);
xlabel(‘n‘); ylabel(‘x(n)‘);
title(‘xn sequence‘);  grid on;
subplot(2,1,2); stem(n1, yn1);
xlabel(‘n‘); ylabel(‘y(n)‘);
title(‘yn sequence‘);  grid on;

  运行结果:

       我自己假设通带1dB,阻带衰减80dB。

       在此基础上设计指标,绝对单位,

技术分享图片

        ellip函数(MATLAB工具箱函数)得到Elliptic带阻滤波器,阶数为5,系统函数串联形式系数如下图。

要想得到题目中的10阶的话,阻带衰减估计需要达到160dB左右,觉得没必要那么大。

技术分享图片

       Elliptic带阻滤波器,幅度谱、相位谱和群延迟响应

技术分享图片

        输入离散时间信号x(n)的谱如下,可看出,频率分量0.44π

技术分享图片

       通过带阻滤波器后,得到的输出y(n)的谱,好像变乱了,o(╥﹏╥)o

技术分享图片

        输入和输出的离散时间序列如下图

技术分享图片

《DSP using MATLAB》Problem 8.42

原文:https://www.cnblogs.com/ky027wh-sx/p/11808896.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!