import torch
from torch import nn
from torch.nn import init
import sys
import numpy as np
sys.path.append('..')
import d2lzh_pytorch as d2l
num_inputs,num_outputs,num_hidden =784,10,256
net = nn.Sequential(d2l.FlattenLayer(),
nn.Linear(num_inputs,num_hidden),
nn.ReLU(),
nn.Linear(num_hidden,num_outputs),
)
for params in net.parameters():
init.normal_(params,mean=0,std=0.01)
print(net.parameters)
<bound method Module.parameters of Sequential(
(0): FlattenLayer()
(1): Linear(in_features=784, out_features=256, bias=True)
(2): ReLU()
(3): Linear(in_features=256, out_features=10, bias=True)
)>
batch_size= 256
train_iter,test_iter = d2l.get_fahsion_mnist(batch_size)
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(),lr=0.5)
num_epochs =5
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)
epoch 1, loss 0.0031, train acc 0.707, test acc 0.810
epoch 2, loss 0.0019, train acc 0.821, test acc 0.810
epoch 3, loss 0.0017, train acc 0.843, test acc 0.835
epoch 4, loss 0.0015, train acc 0.858, test acc 0.840
epoch 5, loss 0.0014, train acc 0.865, test acc 0.853
原文:https://www.cnblogs.com/onemorepoint/p/11811635.html