首页 > 其他 > 详细

Evaluation metrics for classification

时间:2019-11-08 01:17:55      阅读:116      评论:0      收藏:0      [点我收藏+]

Accuracy/Error rate

ACC = (TP+TN)/(P+N)

 

ERR = (FP+FN)/(P+N) = 1-ACC

 

Confusion matrix

技术分享图片

Precision/Recall/F1

Precision = TP/(TP+FP)-- positive predictive value

 

Recall= TP/(TP+FN)  -- true positive rate

 

F1=1/(1/precision+1/recall)

 

ROC

True positive rate (TPR): the ratio of positive instances that are correctly classified as positive

TPR = TP/(TP+FN) = recall

 

True negative rate (TNR): the ratio of negative instances that are correctly classified as negative

TNR = TN/(TN+FP) = specify

 

False positive rate (FPR): the ratio of negative instances that are incorrectly classified as positive. 

FPR = FN/(TN+FP) = 1-specify

 

ROC: TPR vs FPR

 

Matthews correlation coefficient

 技术分享图片

 

Logarithm loss/cross entropy

技术分享图片

 

 

Evaluation metrics for classification

原文:https://www.cnblogs.com/sherrydatascience/p/11817087.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!