给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀。求
\(\sum_{1\leqslant i<j\leqslant n}len(T_i)+len(T_j)-2\times len(lcp(T_i,T_j))\)
其中,\(len\)(a) 表示字符串 \(a\) 的长度,\(lcp\)(a,b) 表示字符串 \(a\) 和字符串 \(b\) 的最长公共前缀。
一行,一个字符串 \(S\) 。
一行,一个整数,表示所求值。
cacao
54
\(2\leqslant n\leqslant 5\times 10^5\) ,且均为小写字母。
后缀自动机
转换成统计每个字符对答案的贡献。
对于后缀自动机上的某个节点,便代表了某个等价类里的一堆连续子串,我们发现,这些子串中的字符产生贡献当且仅当两个后缀 \(T_1, T_2\) 一个经过当前节点,而另一个不经过。
那么这些字符产生的贡献就是经过当前节点的后缀数乘上不经过的后缀数。
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define LL long long
#define go(x, i, v) for (int i = hd[x], v = to[i]; i; v = to[i = nx[i]])
LL read() {
long long x = 0, w = 1;
char ch = getchar();
while (!isdigit(ch)) w = ch == '-' ? -1 : 1, ch = getchar();
while (isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - '0';
ch = getchar();
}
return x * w;
}
const int Max_n = 5e5 + 5, M = 26;
int n;
long long ans;
int num[Max_n << 1], nu[Max_n << 1];
char S[Max_n];
namespace SAM {
int las = 1, cnt = 1;
struct node {
int len, fa, ch[M];
} k[Max_n << 1];
void add(int c) {
int p = las, np = las = ++cnt;
k[np].len = k[p].len + 1, nu[np] = 1;
for (; p && !k[p].ch[c]; p = k[p].fa) k[p].ch[c] = np;
if (!p)
k[np].fa = 1;
else {
int q = k[p].ch[c];
if (k[q].len == k[p].len + 1)
k[np].fa = q;
else {
int nq = ++cnt;
k[nq] = k[q], k[nq].len = k[p].len + 1;
k[q].fa = k[np].fa = nq;
for (; p && k[p].ch[c] == q; p = k[p].fa) k[p].ch[c] = nq;
}
}
}
} // namespace SAM
using namespace SAM;
bool cmp(int a, int b) { return k[a].len < k[b].len; }
int main() {
scanf("%s", S + 1);
n = strlen(S + 1);
for (int i = n; i >= 1; i--) add(S[i] - 'a');
for (int i = 1; i <= cnt; i++) num[i] = i;
sort(num + 1, num + cnt + 1, cmp);
for (int i = cnt; i; i--) {
int x = num[i];
nu[k[x].fa] += nu[x];
ans += 1ll * nu[x] * (n - nu[x]) * (k[x].len - k[k[x].fa].len);
}
cout << ans;
}
原文:https://www.cnblogs.com/luoshuitianyi/p/11823284.html