首页 > 其他 > 详细

三角函数公式整理

时间:2019-11-10 11:18:18      阅读:77      评论:0      收藏:0      [点我收藏+]

诱导公式

奇变偶不变,符号看象限
\[ \begin{aligned} &\cos {\left(\pi + \alpha \right)} =-\cos \alpha\&\sin {\left( \pi + \alpha \right) } = -\sin \alpha\&\tan {\left( \pi + \alpha \right)} = \tan \alpha \end{aligned} \]

\[ \begin{aligned} &\cos {\left(-\alpha \right)} =\cos \alpha\&\sin {\left(-\alpha \right) } = -\sin \alpha\&\tan {\left(-\alpha \right)} = -\tan \alpha \end{aligned} \]

\[ \begin{aligned} &\cos {\left(\pi - \alpha \right)} =-\cos \alpha\&\sin {\left( \pi - \alpha \right) } = \sin \alpha\&\tan {\left( \pi - \alpha \right)} = -\tan \alpha \end{aligned} \]

\[ \begin{aligned} &\cos {\left(\frac \pi 2 - \alpha \right)} =\sin \alpha\&\sin {\left( \frac \pi 2 - \alpha \right) } = \cos \alpha\\end{aligned} \]

\[ \begin{aligned} &\cos {\left(\frac \pi 2 + \alpha \right)} =-\sin \alpha\&\sin {\left( \frac \pi 2 + \alpha \right) } = \cos \alpha\\end{aligned} \]

三角函数公式整理

原文:https://www.cnblogs.com/henry-1202/p/11829131.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!