目录
回归最早由Francis Galton提出,他还是著名生物学家,进化论奠基人Charles Darwin的表弟。Galton受进化论的影响,把该思想进行人类研究,从一串角度解释个体差异形成的原因。
Francis Galton研究人类身高,进行归纳普遍规律,这是最早的回归。
h(θ)=θ0+θ1X
这个方程对应的图形是一条直线,称作回归线,其中θ1为回归线的斜率,θ0为回归线的截距
正相关
负相关
无关
$$
\zeta(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^m(y^i-h_\theta(x^i))^2
$$
Hypothesis:
$$
h_\theta(x)=\theta_0+\theta_1
$$
Simplified:
$$
h_\theta(x)=\theta_1x
$$
Parameters:
$$
\theta_0,\theta1
$$
Simplified:
$$
\theta_1
$$
Cost Function:
$$
J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2
$$
Goal:
$$
\min_{\theta_0,\theta_1}J(\theta_0,\theta_1)
$$
Simplified:
$$
\min_{\theta_1}J(\theta_1)
$$
我们使用相关系数来衡量线性相关的强弱
相关系数R^2(coefficient of determination)是用来描述两个变量之间的线性关系的,但决定系数适用范围更广,可以用于描述非线性或者有2个及两个以上自变量的相关关系。可以来评价模型效果。
总平方和(SST):
$$
\sum_1^n(y_i-\overline{y})^2
$$
回归平方和(SSR):
$$
\sum_i^n(\hat{y}-\overline{y})^2
$$
残差平方和(SSE):
$$
\sum_{i=1}^n(y_i-\hat{y})^2
$$
他们的三者关系是:
$$
SST=SSR+SSE
$$
决定系数:
$$
R^2=\frac{SSR}{SST}=1-\frac{SSE}{SST}
$$
梯度下降法是一个优化算法,来优化代价函数,使代价函数变小
$$
Have?some?function?J(\theta_0,\theta_1)
$$
$$
Want?\min_{\theta_0,\theta_1}(\theta_0,\theta_1)
$$
原文:https://www.cnblogs.com/littlepage/p/11839438.html