首页 > 其他 > 详细

tf_upgrade_v2.exe实验

时间:2019-11-13 16:39:09      阅读:90      评论:0      收藏:0      [点我收藏+]

实验前

import tensorflow as tf
import numpy as np
#create data
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
###create tensorflow structure start###
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
y=Weights*x_data+biases
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
###create tensorflow structure end###
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(Weights), sess.run(biases))

实验后:

import tensorflow as tf
import numpy as np
#create data
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
###create tensorflow structure start###
Weights = tf.Variable(tf.random.uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
y=Weights*x_data+biases
loss = tf.reduce_mean(input_tensor=tf.square(y-y_data))
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.5)
###create tensorflow structure end###
train = optimizer.minimize(loss)
init = tf.compat.v1.initialize_all_variables()
sess = tf.compat.v1.Session()
sess.run(init)
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(Weights), sess.run(biases))

代码对比可看出代码前后的变化

https://blog.csdn.net/u012223913/article/details/79097297

tf_upgrade_v2.exe实验

原文:https://www.cnblogs.com/2008nmj/p/11849957.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!