J.U.C图
当多个线程访问某个类的时候,不管运行环境采用何种方式调度或者这些线程如何交替执行,并且在主调代码中不需要任何额外的同步或者协同,这个类都可以表现出正确的行为,那么这个类就是线程安全的
无状态:不包含任何域,也不包含任何对其他对象中域的引用
竞态条件(Race Condition):并发编程中,不恰当的执行时序而出现不正确的结果
复合操作原子性, "先检查,后执行"的延迟初始化;"读取-修改-写入"操作必须是原子的
加锁机制
内置锁:synchronized同步代码块,每个java对象都可以用作一个作为同步的锁
内置锁 (Intrinsic Lock) 也叫监视器锁(Monitor Lock)
重入: 内置锁可重入,当某个线程试图获得一个已经由它自己持有的锁,请求会成功
重入多用于在子类继承线程同步的情况,子类改写父类的synchronized方法,在子类中的super方法调用父类的方法。如果锁不能重入的话,子类已经拥有锁,无法访问父类方法,并陷入死锁状态
死锁现象的描述:
线程A拥有L锁,并想获得R锁的同时,线程B拥有R锁,并想获得L锁,这样的情况称为死锁
死锁的条件:
jmm的原子操作
内存间的交互操作
read: 将一个变量从主内存传输到工作内存
load: 将read的值放入工作内存的变量副本
use: 将工作内存的一个变量值传递给执行引擎
assign:把一个执行引擎接受到的值赋值工作内存的变量
store: 把工作内存变量值传递到主内存
read: 把store的得到的值放到主内存变量中
lock: 作用于主内存变量
unlock:
可见性描述:
一个线程修改了共享变量的值,其他线程能立即得知这个修改;
从java内存模型来说,变量修改后将新值同步会主内存,并在变量读取之前从主内存刷新变量值
主要作用:
确保将变量更新操作通知到其他线程
java默认提供的弱同步机制,但是没有提供锁机制
写入volatile变量相当于退出同步代码块
读取volatile变量相当于进入同步代码块
加锁机制保证(可见性,原子性)
volatile (可见性)
语义:
锁机制问题
多线程竞争条件下,加锁、释放锁都会导致较多的上下文切换,调度延时,性能问题
一个线程持有锁,会导致其他线程挂起
独占锁使一种悲观锁,synchronized 就是独占锁
乐观锁, 每次不加锁,假设没有冲突而去完成某项操作,因为冲突失败就重试,直到成功
乐观锁机制基于 CAS(compare and swap) 来实现
整个J.U.C 都是建立在CAS之上
不可变对象Immutable一定是线程安全的
为什么创建一个和内置锁机制非常相似的新的加锁机制?
大多数情况下,内置锁可以很好的完成任务
内置锁在功能上存在一些局限
AbstractQueuedSynchronizer
抽象队列同步器,基本思想是一个同步器
获取锁:判断当前状态是否允许获取锁,是- 获取锁;否- 对于独占锁(阻塞),失败(共享锁),阻塞队列(阻塞线程)
释放锁:修改状态位,如果有线程因为状态位阻塞的话,就唤醒队列中一个或者更多的线程
获取锁
ReentrantLock是可重入锁
公平锁: 获取一个锁是按照请求顺序得到的
条件变量用来解决 Object wait()/notify()/notifyAll()的难以使用
释放锁
await(),挂起线程,一旦条件满足被唤醒,再次获取锁
闭锁的一种实现,这个闭锁的状态是一次性的
CountDown() 实现自减
循环屏障,计数器可以使用reset()来重置
await() 来完成自减
信号量是一个计数信号量
计数器不为0的时候,对线程放行
计数器位0的时候,请求资源的新线程都会被阻塞,包括增加到请求许可的线程,seamphore是不可重入的
请求一个许可,计数器减1
释放一个请求,计数器加1
是实现线程池,请求池的完美结构
ReentrantLock实现标准的互斥,一次只有一个线程持有锁(独占锁)
ReentrantReadWriteLock
ReadWriteLock 是一个interface接口
原文:https://www.cnblogs.com/GeekDanny/p/11851240.html