首页 > 其他 > 详细

凹凸性性质

时间:2019-11-17 14:02:18      阅读:114      评论:0      收藏:0      [点我收藏+]

设$f$是有限开区间$(a,b)$上凸函数,并且在该区间上有界,证明$\lim\limits_{x→a^{+}}f(x)$和$\lim\limits_{x→b^{-}}f(x)$存在

设$x∈(a,b)$时,$f(x)≤M$,$x>x_{1}>x_{0}$为$(a,b)$内任意三点,根据$f(x)$凸性,当$x$单调递增时,$$\frac{f(x)-f(x_{0})}{x-x_{0}}$$单调递增

又因为$$\frac{f(x)-f(x_{0})}{x-x_{0}}≤\frac{M-f(x_{0})}{x_{1}-x_{0}}$$

根据单调有界准则,有极限

$$\lim\limits_{x→b^{-}}\frac{f(x)-f(x_{0})}{x-x_{0}}=A$$

从而$$\lim\limits_{x→b^{-}}f(x)=A(b-x_{0})-f(x_{0})$$存在 同理可证$\lim\limits_{x→a^{+}}f(x)$存在

凹凸性性质

原文:https://www.cnblogs.com/Keyon-16/p/11876077.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!