本文首发于个人博客https://kezunlin.me/post/7a6ba82e/,欢迎阅读!
speed up opencv image processing with openmp
CXX_FLAGS=-fopenmp
C/C++| Language | /openmp
#include <omp.h>
#pragma omp parallel for
for loop ...
#include <iostream>
#include <omp.h>
int main()
{
omp_set_num_threads(4);
#pragma omp parallel for
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
printf("\n");
return 0;
}
/*
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 4, I am Thread 2
i = 5, I am Thread 2
i = 6, I am Thread 3
i = 7, I am Thread 3
i = 2, I am Thread 1
i = 3, I am Thread 1
*/
use CXX_FLAGS=-fopenmp
in CMakeLists.txt
cmake_minimum_required(VERSION 3.0.0)
project(hello)
find_package(OpenMP REQUIRED)
if(OPENMP_FOUND)
message("OPENMP FOUND")
message([main] " OpenMP_C_FLAGS=${OpenMP_C_FLAGS}") # -fopenmp
message([main] " OpenMP_CXX_FLAGS}=${OpenMP_CXX_FLAGS}") # -fopenmp
message([main] " OpenMP_EXE_LINKER_FLAGS=${OpenMP_EXE_LINKER_FLAGS}") # ***
# no use for xxx_INCLUDE_DIRS and xxx_libraries for OpenMP
message([main] " OpenMP_INCLUDE_DIRS=${OpenMP_INCLUDE_DIRS}") # ***
message([main] " OpenMP_LIBRARIES=${OpenMP_LIBRARIES}") # ***
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}")
endif()
add_executable(hello hello.cpp)
#target_link_libraries(hello xxx)
options
or use g++ hello.cpp -fopenmp
to compile
list dynamic dependencies (ldd)
ldd hello
linux-vdso.so.1 => (0x00007ffd71365000)
libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f8ea7f00000)
libgomp.so.1 => /usr/lib/x86_64-linux-gnu/libgomp.so.1 (0x00007f8ea7cde000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f8ea7914000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f8ea760b000)
/lib64/ld-linux-x86-64.so.2 (0x00007f8ea8282000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f8ea73f5000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f8ea71f1000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f8ea6fd4000)
libgomp.so.1 => /usr/lib/x86_64-linux-gnu/libgomp.so.1
list names (nm)
nm hello
0000000000602080 B __bss_start
0000000000602190 b completed.7594
U __cxa_atexit@@GLIBC_2.2.5
0000000000602070 D __data_start
0000000000602070 W data_start
0000000000400b00 t deregister_tm_clones
0000000000400b80 t __do_global_dtors_aux
0000000000601df8 t __do_global_dtors_aux_fini_array_entry
0000000000602078 d __dso_handle
0000000000601e08 d _DYNAMIC
0000000000602080 D _edata
0000000000602198 B _end
0000000000400d44 T _fini
0000000000400ba0 t frame_dummy
0000000000601de8 t __frame_dummy_init_array_entry
0000000000400f18 r __FRAME_END__
0000000000602000 d _GLOBAL_OFFSET_TABLE_
0000000000400c28 t _GLOBAL__sub_I_main
w __gmon_start__
0000000000400d54 r __GNU_EH_FRAME_HDR
U GOMP_parallel@@GOMP_4.0
U __gxx_personality_v0@@CXXABI_1.3
00000000004009e0 T _init
0000000000601df8 t __init_array_end
0000000000601de8 t __init_array_start
0000000000400d50 R _IO_stdin_used
w _ITM_deregisterTMCloneTable
w _ITM_registerTMCloneTable
0000000000601e00 d __JCR_END__
0000000000601e00 d __JCR_LIST__
w _Jv_RegisterClasses
0000000000400d40 T __libc_csu_fini
0000000000400cd0 T __libc_csu_init
U __libc_start_main@@GLIBC_2.2.5
0000000000400bc6 T main
0000000000400c3d t main._omp_fn.0
U omp_get_num_threads@@OMP_1.0
U omp_get_thread_num@@OMP_1.0
0000000000400b40 t register_tm_clones
0000000000400ad0 T _start
0000000000602080 d __TMC_END__
0000000000400bea t _Z41__static_initialization_and_destruction_0ii
U _ZNSolsEPFRSoS_E@@GLIBCXX_3.4
U _ZNSt8ios_base4InitC1Ev@@GLIBCXX_3.4
U _ZNSt8ios_base4InitD1Ev@@GLIBCXX_3.4
0000000000602080 B _ZSt4cout@@GLIBCXX_3.4
U _ZSt4endlIcSt11char_traitsIcEERSt13basic_ostreamIT_T0_ES6_@@GLIBCXX_3.4
0000000000602191 b _ZStL8__ioinit
U _ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_c@@GLIBCXX_3.4
omp_get_num_threads
,omp_get_thread_num
OpenMP的指令格式
#pragma omp directive [clause[clause]…]
#pragma omp parallel private(i, j)
parallel
is directive,private
is clause
OpenMP 对可以多线程化的循环有如下五个要求:
如果你的循环不符合这些条件,那就只好改写了.
avoid race condition
当一个循环满足以上五个条件时,依然可能因为数据依赖而不能够合理的并行化。当两个不同的迭代之间的数据存在依赖关系时,就会发生这种情况。
// 假设数组已经初始化为1
#pragma omp parallel for
for (int i = 2; i < 10; i++) {
factorial[i] = i * factorial[i-1];
}
ERROR.
omp_set_num_threads(4);
#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
same as
omp_set_num_threads(4);
#pragma omp parallel for
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
#pragma omp parallel sections # parallel
{
#pragma omp section # thread-1
{
function1();
}
#pragma omp section # thread-2
{
function2();
}
}
parallel sections里面的内容要并行执行,具体分工上,每个线程执行其中的一个section
#pragma omp parallel
{
int x; // private to each thread ? YES
}
#pragma omp parallel for
for (int i = 0; i < 1000; ++i)
{
int x; // private to each thread ? YES
}
local variables are automatically private to each thread.
The reason for the existence of theprivate
clause is so that you don‘t have to change your code.
see here
The only way to parallelize the following code without the private clause
int i,j;
#pragma omp parallel for private(j)
for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {
//do something
}
}
is to change the code. For example like this:
int i;
#pragma omp parallel for
for(i = 0; i < n; i++) {
int j; // mark j as local variable to worker thread
for(j = 0; j < n; j++) {
//do something
}
}
例如累加
int sum = 0;
for (int i = 0; i < 100; i++) {
sum += array[i]; // sum需要私有才能实现并行化,但是又必须是公有的才能产生正确结果
}
上面的这个程序里,sum公有或者私有都不对,为了解决这个问题,OpenMP 提供了reduction
语句;
int sum = 0;
#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < 100; i++) {
sum += array[i];
}
内部实现中,OpenMP为每个线程提供了私有的sum变量(初始化为0),当线程退出时,OpenMP再把每个线程私有的sum加在一起得到最终结果。
num_threads(4)
same as omp_set_num_threads(4)
// `num_threads(4)` same as `omp_set_num_threads(4)`
#pragma omp parallel num_threads(4)
{
printf("Hello, I am Thread %d\n", omp_get_thread_num()); // 0,1,2,3,
}
format
#pragma omp parallel for schedule(kind [, chunk size])
kind: see openmp-loop-scheduling and whats-the-difference-between-static-and-dynamic-schedule-in-openmp
static
: Divide the loop into equal-sized chunks or as equal as possible in the case where the number of loop iterations is not evenly divisible by the number of threads multiplied by the chunk size. By default, chunk size is loop_count/number_of_threads
.dynamic
: Use the internal work queue to give a chunk-sized block of loop iterations to each thread. When a thread is finished, it retrieves the next block of loop iterations from the top of the work queue. By default, the chunk size is 1
. Be careful when using this scheduling type because of the extra overhead involved.guided
: special case of dynamic
. Similar to dynamic scheduling, but the chunk size starts off large and decreases to better handle load imbalance between iterations. The optional chunk parameter specifies them minimum size chunk to use. By default the chunk size is approximately loop_count/number_of_threads
.auto
: When schedule (auto) is specified, the decision regarding scheduling is delegated to the compiler
. The programmer gives the compiler the freedom to choose any possible mapping of iterations to threads in the team.runtime
: with ENVOMP_SCHEDULE
, we can test 3 types scheduling: static,dynamic,guided
without recompile the code.The optional parameter (chunk), when specified, must be a positive integer.
默认情况下,OpenMP认为所有的循环迭代运行的时间都是一样的,这就导致了OpenMP会把不同的迭代等分到不同的核心上,并且让他们分布的尽可能减小内存访问冲突,这样做是因为循环一般会线性地访问内存, 所以把循环按照前一半后一半的方法分配可以最大程度的减少冲突. 然而对内存访问来说这可能是最好的方法, 但是对于负载均衡可能并不是最好的方法, 而且反过来最好的负载均衡可能也会破坏内存访问. 因此必须折衷考虑.
内存访问vs负载均衡,需要折中考虑。
openmp默认使用的schedule是取决于编译器实现的。gcc默认使用schedule(dynamic,1),也就是动态调度并且块大小是1.
线程数不要大于实际核数,否则就是oversubscription
isprime可以对dynamic做一个展示。
omp_get_num_procs
, 返回运行本线程的多处理机的处理器个数。omp_set_num_threads
, 设置并行执行代码时的线程个数omp_get_num_threads
, 返回当前并行区域中的活动线程(active thread)个数,如果没有设置,默认为1。omp_get_thread_num
, 返回线程号(0,1,2,...)omp_init_lock
, 初始化一个简单锁omp_set_lock
, 上锁操作omp_unset_lock
, 解锁操作,要和omp_set_lock
函数配对使用omp_destroy_lock
,关闭一个锁,要和 omp_init_lock
函数配对使用check cpu
cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c
8 Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
omp_get_num_procs
return8
.
void test0()
{
printf("I am Thread %d, omp_get_num_threads = %d, omp_get_num_procs = %d\n",
omp_get_thread_num(),
omp_get_num_threads(),
omp_get_num_procs()
);
}
/*
I am Thread 0, omp_get_num_threads = 1, omp_get_num_procs = 8
*/
void test1()
{
// `parallel`,用在一个代码段之前,表示这段代码block将被多个线程并行执行
// if not set `omp_set_num_threads`, by default use `omp_get_num_procs`, eg 8
//omp_set_num_threads(4); // 设置线程数,一般设置的线程数不超过CPU核心数
#pragma omp parallel
{
printf("Hello, I am Thread %d, omp_get_num_threads = %d, omp_get_num_procs = %d\n",
omp_get_thread_num(),
omp_get_num_threads(),
omp_get_num_procs()
);
}
}
/*
Hello, I am Thread 3, omp_get_num_threads = 8, omp_get_num_procs = 8
Hello, I am Thread 7, omp_get_num_threads = 8, omp_get_num_procs = 8
Hello, I am Thread 1, omp_get_num_threads = 8, omp_get_num_procs = 8
Hello, I am Thread 6, omp_get_num_threads = 8, omp_get_num_procs = 8
Hello, I am Thread 5, omp_get_num_threads = 8, omp_get_num_procs = 8
Hello, I am Thread 4, omp_get_num_threads = 8, omp_get_num_procs = 8
Hello, I am Thread 2, omp_get_num_threads = 8, omp_get_num_procs = 8
Hello, I am Thread 0, omp_get_num_threads = 8, omp_get_num_procs = 8
*/
void test1_2()
{
// `parallel`,用在一个代码段之前,表示这段代码block将被多个线程并行执行
omp_set_num_threads(4); // 设置线程数,一般设置的线程数不超过CPU核心数
#pragma omp parallel
{
printf("Hello, I am Thread %d, omp_get_num_threads = %d, omp_get_num_procs = %d\n",
omp_get_thread_num(),
omp_get_num_threads(),
omp_get_num_procs()
);
//std::cout << "Hello" << ", I am Thread " << omp_get_thread_num() << std::endl; // 0,1,2,3
}
}
/*
# use `cout`
HelloHello, I am Thread Hello, I am Thread , I am Thread Hello, I am Thread 2
1
3
0
*/
/* use `printf`
Hello, I am Thread 0, omp_get_num_threads = 4, omp_get_num_procs = 8
Hello, I am Thread 3, omp_get_num_threads = 4, omp_get_num_procs = 8
Hello, I am Thread 1, omp_get_num_threads = 4, omp_get_num_procs = 8
Hello, I am Thread 2, omp_get_num_threads = 4, omp_get_num_procs = 8
*/
notice the difference of
std::cout
andprintf
void test1_3()
{
// `parallel`,用在一个代码段之前,表示这段代码block将被多个线程并行执行
omp_set_num_threads(4);
#pragma omp parallel
for (int i = 0; i < 3; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
/*
i = 0, I am Thread 1
i = 1, I am Thread 1
i = 2, I am Thread 1
i = 0, I am Thread 3
i = 1, I am Thread 3
i = 2, I am Thread 3
i = 0, I am Thread 2
i = 1, I am Thread 2
i = 2, I am Thread 2
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 2, I am Thread 0
*/
void test2()
{
// `omp parallel` + `omp for` === `omp parallel for`
// `omp for` 用在一个for循环之前,表示for循环的每一次iteration将被分配到多个线程并行执行。
// 此处8次iteration被平均分配到4个thread执行,每个thread执行2次iteration
/*
iter #thread id
0,1 0
2,3 1
4,5 2
6,7 3
*/
omp_set_num_threads(4);
#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
}
/*
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 2, I am Thread 1
i = 3, I am Thread 1
i = 6, I am Thread 3
i = 7, I am Thread 3
i = 4, I am Thread 2
i = 5, I am Thread 2
*/
void test2_2()
{
// `parallel for`,用在一个for循环之前,表示for循环的每一次iteration将被分配到多个线程并行执行。
// 此处8次iteration被平均分配到4个thread执行,每个thread执行2次iteration
/*
iter #thread id
0,1 0
2,3 1
4,5 2
6,7 3
*/
omp_set_num_threads(4);
#pragma omp parallel for
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
/*
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 4, I am Thread 2
i = 5, I am Thread 2
i = 6, I am Thread 3
i = 7, I am Thread 3
i = 2, I am Thread 1
i = 3, I am Thread 1
*/
void base_sqrt()
{
boost::posix_time::ptime pt1 = boost::posix_time::microsec_clock::local_time();
float a = 0;
for (int i=0;i<1000000000;i++)
a = sqrt(i);
boost::posix_time::ptime pt2 = boost::posix_time::microsec_clock::local_time();
int64_t cost = (pt2 - pt1).total_milliseconds();
printf("Worker Thread = %d, cost = %d ms\n",omp_get_thread_num(), cost);
}
void test2_3()
{
boost::posix_time::ptime pt1 = boost::posix_time::microsec_clock::local_time();
omp_set_num_threads(8);
#pragma omp parallel for
for (int i=0;i<8;i++)
base_sqrt();
boost::posix_time::ptime pt2 = boost::posix_time::microsec_clock::local_time();
int64_t cost = (pt2 - pt1).total_milliseconds();
printf("Main Thread = %d, cost = %d ms\n",omp_get_thread_num(), cost);
}
sequential
time ./demo_openmp
Worker Thread = 0, cost = 1746 ms
Worker Thread = 0, cost = 1711 ms
Worker Thread = 0, cost = 1736 ms
Worker Thread = 0, cost = 1734 ms
Worker Thread = 0, cost = 1750 ms
Worker Thread = 0, cost = 1718 ms
Worker Thread = 0, cost = 1769 ms
Worker Thread = 0, cost = 1732 ms
Main Thread = 0, cost = 13899 ms
./demo_openmp 13.90s user 0.00s system 99% cpu 13.903 total
parallel
time ./demo_openmp
Worker Thread = 1, cost = 1875 ms
Worker Thread = 6, cost = 1876 ms
Worker Thread = 0, cost = 1876 ms
Worker Thread = 7, cost = 1876 ms
Worker Thread = 5, cost = 1877 ms
Worker Thread = 3, cost = 1963 ms
Worker Thread = 4, cost = 2000 ms
Worker Thread = 2, cost = 2027 ms
Main Thread = 0, cost = 2031 ms
./demo_openmp 15.10s user 0.01s system 740% cpu 2.041 total
2031s + 10ms(system) = 2041ms (total)
2.041* 740% = 15.1034 s
void test3()
{
boost::posix_time::ptime pt1 = boost::posix_time::microsec_clock::local_time();
omp_set_num_threads(4);
// `parallel sections`里面的内容要并行执行,具体分工上,每个线程执行其中的一个`section`
#pragma omp parallel sections // parallel
{
#pragma omp section // thread-0
{
base_sqrt();
}
#pragma omp section // thread-1
{
base_sqrt();
}
#pragma omp section // thread-2
{
base_sqrt();
}
#pragma omp section // thread-3
{
base_sqrt();
}
}
boost::posix_time::ptime pt2 = boost::posix_time::microsec_clock::local_time();
int64_t cost = (pt2 - pt1).total_milliseconds();
printf("Main Thread = %d, cost = %d ms\n",omp_get_thread_num(), cost);
}
/*
time ./demo_openmp
Worker Thread = 0, cost = 1843 ms
Worker Thread = 1, cost = 1843 ms
Worker Thread = 3, cost = 1844 ms
Worker Thread = 2, cost = 1845 ms
Main Thread = 0, cost = 1845 ms
./demo_openmp 7.39s user 0.00s system 398% cpu 1.855 total
*/
void test4_error()
{
int i,j;
omp_set_num_threads(4);
// we get error result, because `j` is shared between all worker threads.
#pragma omp parallel for
for(i = 0; i < 4; i++) {
for(j = 0; j < 8; j++) {
printf("Worker Thread = %d, j = %d ms\n",omp_get_thread_num(), j);
}
}
}
/*
Worker Thread = 3, j = 0 ms
Worker Thread = 3, j = 1 ms
Worker Thread = 0, j = 0 ms
Worker Thread = 0, j = 3 ms
Worker Thread = 0, j = 4 ms
Worker Thread = 0, j = 5 ms
Worker Thread = 3, j = 2 ms
Worker Thread = 3, j = 7 ms
Worker Thread = 0, j = 6 ms
Worker Thread = 1, j = 0 ms
Worker Thread = 2, j = 0 ms
*/
error results.
void test4_fix1()
{
int i;
omp_set_num_threads(4);
// we get error result, because `j` is shared between all worker threads.
// fix1: we have to change original code to make j as local variable
#pragma omp parallel for
for(i = 0; i < 4; i++) {
int j; // fix1: `int j`
for(j = 0; j < 8; j++) {
printf("Worker Thread = %d, j = %d ms\n",omp_get_thread_num(), j);
}
}
}
/*
Worker Thread = 0, j = 0 ms
Worker Thread = 0, j = 1 ms
Worker Thread = 2, j = 0 ms
Worker Thread = 2, j = 1 ms
Worker Thread = 1, j = 0 ms
Worker Thread = 1, j = 1 ms
Worker Thread = 1, j = 2 ms
Worker Thread = 1, j = 3 ms
Worker Thread = 1, j = 4 ms
Worker Thread = 1, j = 5 ms
Worker Thread = 1, j = 6 ms
Worker Thread = 1, j = 7 ms
Worker Thread = 2, j = 2 ms
Worker Thread = 2, j = 3 ms
Worker Thread = 2, j = 4 ms
Worker Thread = 2, j = 5 ms
Worker Thread = 2, j = 6 ms
Worker Thread = 2, j = 7 ms
Worker Thread = 0, j = 2 ms
Worker Thread = 0, j = 3 ms
Worker Thread = 0, j = 4 ms
Worker Thread = 0, j = 5 ms
Worker Thread = 0, j = 6 ms
Worker Thread = 0, j = 7 ms
Worker Thread = 3, j = 0 ms
Worker Thread = 3, j = 1 ms
Worker Thread = 3, j = 2 ms
Worker Thread = 3, j = 3 ms
Worker Thread = 3, j = 4 ms
Worker Thread = 3, j = 5 ms
Worker Thread = 3, j = 6 ms
Worker Thread = 3, j = 7 ms
*/
void test4_fix2()
{
int i,j;
omp_set_num_threads(4);
// we get error result, because `j` is shared between all worker threads.
// fix1: we have to change original code to make j as local variable
// fix2: use `private(j)`, no need to change original code
#pragma omp parallel for private(j) // fix2
for(i = 0; i < 4; i++) {
for(j = 0; j < 8; j++) {
printf("Worker Thread = %d, j = %d ms\n",omp_get_thread_num(), j);
}
}
}
/*
Worker Thread = 0, j = 0 ms
Worker Thread = 0, j = 1 ms
Worker Thread = 0, j = 2 ms
Worker Thread = 0, j = 3 ms
Worker Thread = 0, j = 4 ms
Worker Thread = 0, j = 5 ms
Worker Thread = 0, j = 6 ms
Worker Thread = 0, j = 7 ms
Worker Thread = 2, j = 0 ms
Worker Thread = 2, j = 1 ms
Worker Thread = 2, j = 2 ms
Worker Thread = 2, j = 3 ms
Worker Thread = 2, j = 4 ms
Worker Thread = 2, j = 5 ms
Worker Thread = 2, j = 6 ms
Worker Thread = 2, j = 7 ms
Worker Thread = 3, j = 0 ms
Worker Thread = 3, j = 1 ms
Worker Thread = 3, j = 2 ms
Worker Thread = 3, j = 3 ms
Worker Thread = 3, j = 4 ms
Worker Thread = 3, j = 5 ms
Worker Thread = 1, j = 0 ms
Worker Thread = 1, j = 1 ms
Worker Thread = 1, j = 2 ms
Worker Thread = 1, j = 3 ms
Worker Thread = 1, j = 4 ms
Worker Thread = 1, j = 5 ms
Worker Thread = 1, j = 6 ms
Worker Thread = 1, j = 7 ms
Worker Thread = 3, j = 6 ms
Worker Thread = 3, j = 7 ms
*/
void test5_error()
{
int array[8] = {0,1,2,3,4,5,6,7};
int sum = 0;
omp_set_num_threads(4);
//#pragma omp parallel for reduction(+:sum)
#pragma omp parallel for // ERROR
for (int i = 0; i < 8; i++) {
sum += array[i];
printf("Worker Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum);
}
printf("Main Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum);
}
/*
// ERROR RESULT
Worker Thread = 0, sum = 0 ms
Worker Thread = 0, sum = 9 ms
Worker Thread = 3, sum = 8 ms
Worker Thread = 3, sum = 16 ms
Worker Thread = 1, sum = 2 ms
Worker Thread = 1, sum = 19 ms
Worker Thread = 2, sum = 4 ms
Worker Thread = 2, sum = 24 ms
Main Thread = 0, sum = 24 ms
*/
void test5_fix()
{
int array[8] = {0,1,2,3,4,5,6,7};
int sum = 0;
/*
sum需要私有才能实现并行化,但是又必须是公有的才能产生正确结果;
sum公有或者私有都不对,为了解决这个问题,OpenMP提供了reduction语句.
内部实现中,OpenMP为每个线程提供了私有的sum变量(初始化为0),
当线程退出时,OpenMP再把每个线程私有的sum加在一起得到最终结果。
*/
omp_set_num_threads(4);
#pragma omp parallel for reduction(+:sum)
//#pragma omp parallel for // ERROR
for (int i = 0; i < 8; i++) {
sum += array[i];
printf("Worker Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum);
}
printf("Main Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum);
}
/*
Worker Thread = 0, sum = 0 ms
Worker Thread = 0, sum = 1 ms
Worker Thread = 1, sum = 2 ms
Worker Thread = 1, sum = 5 ms
Worker Thread = 3, sum = 6 ms
Worker Thread = 3, sum = 13 ms
Worker Thread = 2, sum = 4 ms
Worker Thread = 2, sum = 9 ms
Main Thread = 0, sum = 28 ms
*/
void test6()
{
// `num_threads(4)` same as `omp_set_num_threads(4)`
#pragma omp parallel num_threads(4)
{
printf("Hello, I am Thread %d\n", omp_get_thread_num()); // 0,1,2,3,
}
}
/*
Hello, I am Thread 0
Hello, I am Thread 2
Hello, I am Thread 3
Hello, I am Thread 1
*/
void test7_1()
{
omp_set_num_threads(4);
// static, num_loop/num_threads
#pragma omp parallel for schedule(static,2)
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
/*
i = 2, I am Thread 1
i = 3, I am Thread 1
i = 6, I am Thread 3
i = 7, I am Thread 3
i = 4, I am Thread 2
i = 5, I am Thread 2
i = 0, I am Thread 0
i = 1, I am Thread 0
*/
void test7_2()
{
omp_set_num_threads(4);
// static, num_loop/num_threads
#pragma omp parallel for schedule(static,4)
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
/*
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 2, I am Thread 0
i = 3, I am Thread 0
i = 4, I am Thread 1
i = 5, I am Thread 1
i = 6, I am Thread 1
i = 7, I am Thread 1
*/
void test7_3()
{
omp_set_num_threads(4);
// dynamic
#pragma omp parallel for schedule(dynamic,1)
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
/*
i = 0, I am Thread 2
i = 4, I am Thread 2
i = 5, I am Thread 2
i = 6, I am Thread 2
i = 7, I am Thread 2
i = 3, I am Thread 3
i = 1, I am Thread 0
i = 2, I am Thread 1
*/
void test7_4()
{
omp_set_num_threads(4);
// dynamic
#pragma omp parallel for schedule(dynamic,3)
for (int i = 0; i < 8; i++)
{
printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}
}
/*
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 2, I am Thread 0
i = 6, I am Thread 2
i = 7, I am Thread 2
i = 3, I am Thread 1
i = 4, I am Thread 1
i = 5, I am Thread 1
*/
#define NUM 100000000
int isprime( int x )
{
for( int y = 2; y * y <= x; y++ )
{
if( x % y == 0 )
return 0;
}
return 1;
}
void test8()
{
int sum = 0;
#pragma omp parallel for reduction (+:sum) schedule(dynamic,1)
for( int i = 2; i <= NUM ; i++ )
{
sum += isprime(i);
}
printf( "Number of primes numbers: %d", sum );
}
Number of primes numbers: 5761455./demo_openmp 151.64s user 0.04s system 582% cpu 26.048 total
Number of primes numbers: 5761455./demo_openmp 111.13s user 0.00s system 399% cpu 27.799 total
Number of primes numbers: 5761455./demo_openmp 167.22s user 0.02s system 791% cpu 21.135 total
Number of primes numbers: 5761455./demo_openmp 165.96s user 0.02s system 791% cpu 20.981 total
see how-opencv-use-openmp-thread-to-get-performance
3 type OpenCV implementation
With CMake-gui, Building
OpenCV
with theWITH_OPENMP
flag means that the internal functions will useOpenMP
to parallelize some of the algorithms, likecvCanny
,cvSmooth
andcvThreshold
.
In OpenCV, an algorithm can have a
sequential (slowest) implementation
; aparallel implementation
usingOpenMP
orTBB
; and aGPU implementation
usingOpenCL
orCUDA
(fastest). You can decide with theWITH_XXX
flags which version to use.
Of course, not every algorithm can be parallelized.
Now, if you want to parallelize your methods with OpenMP, you have to implement it yourself.
avoiding extra copying
from improving-image-processing-speed
There is one important thing about increasing speed in OpenCV not related to processor nor algorithm and it is avoiding extra copying when dealing with matrices. I will give you an example taken from the documentation:
"...by constructing a header for a part of another matrix. It can be a single row, single column, several rows, several columns, rectangular region in the matrix (called a minor in algebra) or a diagonal. Such operations are also O(1), because the new header will reference the same data. You can actually modify a part of the matrix using this feature, e.g."
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/features2d/features2d.hpp"
#include <iostream>
#include <vector>
#include <omp.h>
void opencv_vector()
{
int imNum = 2;
std::vector<cv::Mat> imVec(imNum);
std::vector<std::vector<cv::KeyPoint>>keypointVec(imNum);
std::vector<cv::Mat> descriptorsVec(imNum);
cv::Ptr<cv::ORB> detector = cv::ORB::create();
cv::Ptr<DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce-Hamming");
std::vector< cv::DMatch > matches;
char filename[100];
double t1 = omp_get_wtime();
//#pragma omp parallel for
for (int i=0;i<imNum;i++){
sprintf(filename,"rgb%d.jpg",i);
imVec[i] = cv::imread( filename, CV_LOAD_IMAGE_GRAYSCALE );
detector->detect( imVec[i], keypointVec[i] );
detector->compute( imVec[i],keypointVec[i],descriptorsVec[i]);
std::cout<<"find "<<keypointVec[i].size()<<" keypoints in im"<<i<<std::endl;
}
double t2 = omp_get_wtime();
std::cout<<"time: "<<t2-t1<<std::endl;
matcher->match(descriptorsVec[0], descriptorsVec[1], matches, 2); // uchar descriptor Mat
cv::Mat img_matches;
cv::drawMatches( imVec[0], keypointVec[0], imVec[1], keypointVec[1], matches, img_matches );
cv::namedWindow("Matches",CV_WINDOW_AUTOSIZE);
cv::imshow( "Matches", img_matches );
cv::waitKey(0);
}
#pragma omp parallel sections
{
#pragma omp section
{
std::cout<<"processing im0"<<std::endl;
im0 = cv::imread("rgb0.jpg", CV_LOAD_IMAGE_GRAYSCALE );
detector.detect( im0, keypoints0);
extractor.compute( im0,keypoints0,descriptors0);
std::cout<<"find "<<keypoints0.size()<<"keypoints in im0"<<std::endl;
}
#pragma omp section
{
std::cout<<"processing im1"<<std::endl;
im1 = cv::imread("rgb1.jpg", CV_LOAD_IMAGE_GRAYSCALE );
detector.detect( im1, keypoints1);
extractor.compute( im1,keypoints1,descriptors1);
std::cout<<"find "<<keypoints1.size()<<"keypoints in im1"<<std::endl;
}
}
使用OpenMP加快OpenCV图像处理性能 | speed up opencv image processing with openmp
原文:https://www.cnblogs.com/kezunlin/p/11880880.html