首页 > 其他 > 详细

BP神经网络

时间:2019-11-18 21:41:53      阅读:150      评论:0      收藏:0      [点我收藏+]

算法原理

参数更新公式(梯度下降)
\[\upsilon \gets \upsilon + \Delta \upsilon\]
技术分享图片
针对隐层到输出层的连接权
技术分享图片
实际上,三层网络可以记为
\[ g_k(x) = f_2(\sum_{j=1}^{l} \omega_{kj} f_1(\sum_{i=1}^{d} \omega_{ji} x_i + \omega_{j0}) + \omega _{k0}) \]
因此可继续推得

  1. \[ \Delta \theta_{j} = -\eta \frac{\partial E_k}{\partial \theta_{j}} \= -\eta \frac{\partial E_k}{\partial \hat{y_j}^k} \frac{{\partial \hat{y_j}^k}}{\partial \beta_j} \frac{\partial \beta_j}{\partial \theta_j} \= -\eta g_j * 1\= -\eta g_j \]
  2. \[ \Delta V_{ih} = -\eta\frac{\partial E_k}{\partial \hat{y_{1...j}}^k} \frac{\partial \hat{y_{1...j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \frac{\partial \alpha_n}{\partial v_{ih}} \=-\eta\sum_{j=1}^{l} \frac{\partial E_k}{\partial \hat{y_{j}}^k} \frac{\partial \hat{y_{j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \frac{\partial \alpha_n}{\partial v_{ih}} \=-\eta x_i \sum_{j=1}^{l} \frac{\partial E_k}{\partial \hat{y_{j}}^k} \frac{\partial \hat{y_{j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \= \eta e_h x_i \]
    \[ e_h = -\sum_{j=1}^{l} \frac{\partial E_k}{\partial \hat{y_{j}}^k} \frac{\partial \hat{y_{j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \= b_n(1-b_n) \sum_{j=1}^{l} \omega_{hj} g_j \]
  3. 可类似1得
    \[ \Delta \gamma_h = -\eta e_h \]

技术分享图片
技术分享图片

参考文献

《机器学习》,周志华著

BP神经网络

原文:https://www.cnblogs.com/kexve/p/11884982.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!