写在前面
首先,在学树链剖分之前最好先把 LCA、树形DP、DFS序 这三个知识点学了
emm还有必备的 链式前向星、线段树 也要先学了。
如果这三个知识点没掌握好的话,树链剖分难以理解也是当然的。
树链剖分
树链剖分 就是对一棵树分成几条链,把树形变为线性,减少处理难度
需要处理的问题:
- 将树从x到y结点最短路径上所有节点的值都加上z
- 求树从x到y结点最短路径上所有节点的值之和
- 将以x为根节点的子树内所有节点值都加上z
- 求以x为根节点的子树内所有节点值之和
目录:
- 重儿子:对于每一个非叶子节点,它的儿子中 以那个儿子为根的子树节点数最大的儿子 为该节点的重儿子 (Ps: 感谢@shzr大佬指出我此句话的表达不严谨qwq, 已修改)
- 轻儿子:对于每一个非叶子节点,它的儿子中 非重儿子 的剩下所有儿子即为轻儿子
- 叶子节点没有重儿子也没有轻儿子(因为它没有儿子。。)
- 重边:一个父亲连接他的重儿子的边称为重边 //原写法:连接任意两个重儿子的边叫做重边
- 轻边:剩下的即为轻边
- 重链:相邻重边连起来的 连接一条重儿子 的链叫重链
- 对于叶子节点,若其为轻儿子,则有一条以自己为起点的长度为1的链
- 每一条重链以轻儿子为起点
这个dfs要处理几件事情:
- 标记每个点的深度dep[]
- 标记每个点的父亲fa[]
- 标记每个非叶子节点的子树大小(含它自己)
- 标记每个非叶子节点的重儿子编号son[]
inline void dfs1(int x,int f,int deep){//x当前节点,f父亲,deep深度
dep[x]=deep;//标记每个点的深度
fa[x]=f;//标记每个点的父亲
siz[x]=1;//标记每个非叶子节点的子树大小
int maxson=-1;//记录重儿子的儿子数
for(Rint i=beg[x];i;i=nex[i]){
int y=to[i];
if(y==f)continue;//若为父亲则continue
dfs1(y,x,deep+1);//dfs其儿子
siz[x]+=siz[y];//把它的儿子数加到它身上
if(siz[y]>maxson)son[x]=y,maxson=siz[y];//标记每个非叶子节点的重儿子编号
}
}//变量解释见最下面
这个dfs2也要预处理几件事情
- 标记每个点的新编号
- 赋值每个点的初始值到新编号上
- 处理每个点所在链的顶端
- 处理每条链
顺序:先处理重儿子再处理轻儿子,理由后面说
inline void dfs2(int x,int topf){//x当前节点,topf当前链的最顶端的节点
id[x]=++cnt;//标记每个点的新编号
wt[cnt]=w[x];//把每个点的初始值赋到新编号上来
top[x]=topf;//这个点所在链的顶端
if(!son[x])return;//如果没有儿子则返回
dfs2(son[x],topf);//按先处理重儿子,再处理轻儿子的顺序递归处理
for(Rint i=beg[x];i;i=nex[i]){
int y=to[i];
if(y==fa[x]||y==son[x])continue;
dfs2(y,y);//对于每一个轻儿子都有一条从它自己开始的链
}
}//变量解释见最下面
Attention 重要的来了!!!
前面说到dfs2的顺序是先处理重儿子再处理轻儿子
我们来模拟一下:
- 因为顺序是先重再轻,所以每一条重链的新编号是连续的
- 因为是dfs,所以每一个子树的新编号也是连续的
现在回顾一下我们要处理的问题
- 处理任意两点间路径上的点权和
- 处理一点及其子树的点权和
- 修改任意两点间路径上的点权
- 修改一点及其子树的点权
1、当我们要处理任意两点间路径时:
设所在链顶端的深度更深的那个点为x点
- ans加上x点到x所在链顶端 这一段区间的点权和
- 把x跳到x所在链顶端的那个点的上面一个点
不停执行这两个步骤,直到两个点处于一条链上,这时再加上此时两个点的区间和即可
这时我们注意到,我们所要处理的所有区间均为连续编号(新编号),于是想到线段树,用线段树处理连续编号区间和
每次查询时间复杂度为O(log2n)O(log2?n)
inline int qRange(int x,int y){
int ans=0;
while(top[x]!=top[y]){//当两个点不在同一条链上
if(dep[top[x]]<dep[top[y]])swap(x,y);//把x点改为所在链顶端的深度更深的那个点
res=0;
query(1,1,n,id[top[x]],id[x]);//ans加上x点到x所在链顶端 这一段区间的点权和
ans+=res;
ans%=mod;//按题意取模
x=fa[top[x]];//把x跳到x所在链顶端的那个点的上面一个点
}
//直到两个点处于一条链上
if(dep[x]>dep[y])swap(x,y);//把x点深度更深的那个点
res=0;
query(1,1,n,id[x],id[y]);//这时再加上此时两个点的区间和即可
ans+=res;
return ans%mod;
}//变量解释见最下面
2、处理一点及其子树的点权和:
想到记录了每个非叶子节点的子树大小(含它自己),并且每个子树的新编号都是连续的
于是直接线段树区间查询即可
时间复杂度为O(logn)O(log?n)
inline int qSon(int x){
res=0;
query(1,1,n,id[x],id[x]+siz[x]-1);//子树区间右端点为id[x]+siz[x]-1
return res;
}
当然,区间修改就和区间查询一样的啦~~
inline void updRange(int x,int y,int k){
k%=mod;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
update(1,1,n,id[top[x]],id[x],k);
x=fa[top[x]];
}
if(dep[x]>dep[y])swap(x,y);
update(1,1,n,id[x],id[y],k);
}
inline void updSon(int x,int k){
update(1,1,n,id[x],id[x]+siz[x]-1,k);
}//变量解释见最下面
既然前面说到要用线段树,那么按题意建树就可以啦!
不过,建树这一步当然是在处理问题之前哦~