垃圾回收:引用计数为主,标记清除和分带回收为辅
a = 3.14
del a
print(id(a))
b = 2.7
print(id(b)) #a和b的内存地址一样,因为有内存池的存在,浮点数和列表会使用和之前创建的对象同一内存地址
如果一个对象在其生命周期内,其哈希值(可以通过python的内置函数hash获得)从未改变(这需要一个__hash__()方法),并且可以与其他对象进行比较(这需要一个__eq__()或__cmp__()方法),那么这个对象就是可哈希的。哈希对象的相等意味着其哈希值的相等。
哈希性使得对象可以用作dictionary键和set成员,因为这些数据结构在内部使用了哈希值。
Python的所有不可变的内置对象都是可hashable的,但可变容器(如列表或字典)并非如此。对于用户定义的类的实例,默认情况下是可哈希的;它们都是不相等的,并且它们的哈希值都是id()。
python中的字典底层依靠哈希表(hash table)实现, 使用开放寻址法解决冲突,
哈希表是key-value类型的数据结构, 可以理解为一个键值需要按照一定规则存放的数组, 而哈希函数就是这个规则
字典本质上是一个散列表(总有空白元素的数组, python至少保证1/3的数组是空的), 字典中的每个键都占用一个单元, 一个单元分为两部分, 分别是对键的引用和对值的引用, 使用hash函数获得键的散列值, 散列值对数组长度取余, 取得的值就是存放位置的索引,哈希冲突(数组的索引相同), 使用开放寻址法解决,这也是python中要求字典的key必须可hash的原因
数组中1/3的位置为空, 增加元素可能会导致扩容, 引发新的散列冲突, 导致新的散列表中键的次序发生变化, 这也是字典遍历时不能添加和删除的原因
解决哈希冲突的方法一般有:开放定址法、链地址法(拉链法)、再哈希法、建立公共溢出区等方法。
1 开放定址法
从发生冲突的那个单元起,按照一定的次序,从哈希表中找到一个空闲的单元。然后把发生冲突的元素存入到该单元的一种方法。开放定址法需要的表长度要大于等于所需要存放的元素。
在开放定址法中解决冲突的方法有:线行探查法、平方探查法、双散列函数探查法。
开放定址法的缺点在于删除元素的时候不能真的删除,否则会引起查找错误,只能做一个特殊标记。只到有下个元素插入才能真正删除该元素。
2 线行探查法
线行探查法是开放定址法中最简单的冲突处理方法,它从发生冲突的单元起,依次判断下一个单元是否为空,当达到最后一个单元时,再从表首依次判断。直到碰到空闲的单元或者探查完全部单元为止。
3 平方探查法
平方探查法即是发生冲突时,用发生冲突的单元d[i], 加上 12、 22等。即d[i] + 12,d[i] + 22, d[i] + 32...直到找到空闲单元。
在实际操作中,平方探查法不能探查到全部剩余的单元。不过在实际应用中,能探查到一半单元也就可以了。若探查到一半单元仍找不到一个空闲单元,表明此散列表太满,应该重新建立。
4 双散列函数探查法
这种方法使用两个散列函数hl和h2。其中hl和前面的h一样,以关键字为自变量,产生一个0至m—l之间的数作为散列地址;h2也以关键字为自变量,产生一个l至m—1之间的、并和m互素的数(即m不能被该数整除)作为探查序列的地址增量(即步长),探查序列的步长值是固定值l;对于平方探查法,探查序列的步长值是探查次数i的两倍减l;对于双散列函数探查法,其探查序列的步长值是同一关键字的另一散列函数的值。
2 链地址法(拉链法)
链接地址法的思路是将哈希值相同的元素构成一个同义词的单链表,并将单链表的头指针存放在哈希表的第i个单元中,查找、插入和删除主要在同义词链表中进行。链表法适用于经常进行插入和删除的情况。
如下一组数字,(32、40、36、53、16、46、71、27、42、24、49、64)哈希表长度为13,哈希函数为H(key)=key%13,则链表法结果如下:
0
1 -> 40 -> 27 -> 53
2
3 -> 16 -> 42
4
5
6 -> 32 -> 71
7 -> 46
8
9
10 -> 36 -> 49
11 -> 24
12 -> 64
注:在java中,链接地址法也是HashMap解决哈希冲突的方法之一,jdk1.7完全采用单链表来存储同义词,jdk1.8则采用了一种混合模式,对于链表长度大于8的,会转换为红黑树存储。
3 再哈希法
就是同时构造多个不同的哈希函数:
Hi = RHi(key) i= 1,2,3 ... k;
当H1 = RH1(key) 发生冲突时,再用H2 = RH2(key) 进行计算,直到冲突不再产生,这种方法不易产生聚集,但是增加了计算时间。
4 建立公共溢出区
将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区。
原文:https://www.cnblogs.com/muchengQ/p/11908410.html