%matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy import stats import seaborn as sns;sns.set() # 使用seaborn的默认设置
这里自己生成一些随机数据
#随机来点数据 from sklearn.datasets.samples_generator import make_blobs X, y = make_blobs( n_samples=50, # 样本点数量 centers=2, # 簇堆数量 random_state=0, # 随机种子 cluster_std=0.60 # 簇离散程度 ) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=‘autumn‘)
xfit = np.linspace(-1, 3.5) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=‘autumn‘) plt.plot([0.6], [2.1], ‘x‘, color=‘red‘, markeredgewidth=2, markersize=10) for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]: plt.plot(xfit, m * xfit + b, ‘-k‘) plt.xlim(-1, 3.5);
如图所示分开有很多种方式, 看哪种更好呢?
xfit = np.linspace(-1, 3.5) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=‘autumn‘) for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]: yfit = m * xfit + b plt.plot(xfit, yfit, ‘-k‘) plt.fill_between(xfit, yfit - d, yfit + d, edgecolor=‘none‘, color=‘#AAAAAA‘, alpha=0.4) plt.xlim(-1, 3.5);
画出来他的决策边界即可看出宽度
from sklearn.svm import SVC # "Support vector classifier" model = SVC(kernel=‘linear‘) model.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma=‘auto‘, kernel=‘linear‘, max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)
#绘图函数 def plot_svc_decision_function(model, ax=None, plot_support=True): """Plot the decision function for a 2D SVC""" if ax is None: ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() # create grid to evaluate model x = np.linspace(xlim[0], xlim[1], 30) y = np.linspace(ylim[0], ylim[1], 30) Y, X = np.meshgrid(y, x) xy = np.vstack([X.ravel(), Y.ravel()]).T P = model.decision_function(xy).reshape(X.shape) # plot decision boundary and margins ax.contour(X, Y, P, colors=‘k‘, levels=[-1, 0, 1], alpha=0.5, linestyles=[‘--‘, ‘-‘, ‘--‘]) # plot support vectors if plot_support: ax.scatter(model.support_vectors_[:, 0], model.support_vectors_[:, 1], s=300, linewidth=1, facecolors=‘none‘); ax.set_xlim(xlim) ax.set_ylim(ylim)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=‘autumn‘) plot_svc_decision_function(model);
这条线就是我们希望得到的决策边界啦
观察发现有3个点做了特殊的标记,它们恰好都是边界上的点
它们就是我们的support vectors(支持向量)
在Scikit-Learn中, 它们存储在这个位置 support_vectors_
(一个属性)
model.support_vectors_
array([[0.44359863, 3.11530945], [2.33812285, 3.43116792], [2.06156753, 1.96918596]])
原文:https://www.cnblogs.com/shijieli/p/11910465.html