几种常见的优化函数比较:https://blog.csdn.net/w113691/article/details/82631097
1 ‘‘‘ 2 基于Adam识别MNIST数据集 3 ‘‘‘ 4 import torch 5 import torchvision 6 import torchvision.transforms as transform 7 import torch.nn 8 from torch.autograd import Variable 9 10 ‘‘‘ 11 神经网络层级结构: 12 卷积层Conv1,Conv2() 13 最大池化层 MaxPool2d() 14 损失函数 ReLU() 15 参数: 16 卷积神经网络的卷积层参数:------输入通道数、输出通道数、卷积核大小、卷积核移动步长和Padding的值 17 Conv2d(input_channels,output_channels,kernel_size,stride,padding); 18 最大池化层参数:------池化窗口大小、移动步长 19 MaxPool2d(kernel_size,stride) 20 方法: 21 1.torch.nn.Sequential()用作参数序列化,神经网络模块会按照传入Suquential构造器顺序依次被添加到计算图中执行 22 2.torch.nn.Linear(x,y)用作对矩阵线性变换,对于一个a*x大小的矩阵,变换后会变成a*y大小的矩阵,即矩阵的乘法 23 ‘‘‘ 24 25 26 class LeNet(torch.nn.Module): 27 def __init__(self): 28 super(LeNet, self).__init__() 29 30 # 卷积层1 31 self.conv1 = torch.nn.Sequential( # input_size=(1*28*28) 32 torch.nn.Conv2d(1, 6, 5, 1, 2), # padding=2保证输入输出尺寸相同 33 # 输出尺寸计算公式:Height=(Height_input-kernel_size+2*padding)/stride+1 34 # 输出尺寸=(28 - 5 + 2*2)/1 + 1 = 28 35 torch.nn.ReLU(), # input_size=(6*28*28) 36 torch.nn.MaxPool2d(kernel_size=2, stride=2), # output_size=(6*14*14) 37 # 池化层尺寸计算公式: Height=(Height_input-Height_filter)/stride+1 38 # Height = (28 - 2)/2 +1 = 14 39 ) 40 # 卷积层2 41 self.conv2 = torch.nn.Sequential( 42 torch.nn.Conv2d(6, 16, 5), # 默认stride=1,padding=0; 输入矩阵 6*14*14 43 # Height = (14-5+0*2)/1 + 1 = 10 44 torch.nn.ReLU(), # input_size=(16*10*10) 45 torch.nn.MaxPool2d(2, 2) # output_size=(16*5*5) 46 # Height = (10-2)/2 + 1 = 5 47 ) 48 # 全连接层1 49 self.fullConnection1 = torch.nn.Sequential( 50 torch.nn.Linear(16 * 5 * 5, 120), 51 torch.nn.ReLU() 52 ) 53 # 全连接层2 54 self.fullConnection2 = torch.nn.Sequential( 55 torch.nn.Linear(120, 84), 56 torch.nn.ReLU() 57 ) 58 # 全连接层3 59 self.fullConnection3 = torch.nn.Linear(84, 10) 60 61 def forward(self, x): 62 x = self.conv1(x) 63 x = self.conv2(x) 64 x = x.view(x.size()[0], -1) # 对参数进行扁平化,因为之后要进行全连接,必须降低他的channel 65 x = self.fullConnection1(x) 66 x = self.fullConnection2(x) 67 x = self.fullConnection3(x) 68 return x 69 70 71 EPOCH = 8 # 遍历总次数 72 BATCH_SIZE = 64 # 批处理尺寸 73 LEARNINGRATE = 0.001 74 75 ‘‘‘ 76 ------------------------------定义数据预处理方式------------------------------ 77 现在需要考虑的是,计算机视觉的数据集很多是图片形式的,而PyTorch中计算的则是Tensor数据类型的变量,因此我们先要做的是数据类型的转换 78 即 图像类型---->Tensor类型 79 80 需要注意的是,有的时候我们的训练集是有限的,这个时候需要进行数据增强 81 数据增强就是将图片进行各种变换,例如放大、缩小、水平翻转、垂直反转等 82 torch.transforms()中有很多数据增强的变换类 83 ‘‘‘ 84 transform = transform.ToTensor() 85 86 # 定义训练数据集 87 data_train = torchvision.datasets.MNIST( 88 root=‘C://data/‘, 89 train=True, 90 download=False, 91 transform=transform 92 ) 93 94 # 定义训练批处理数据 95 data_train_loader = torch.utils.data.DataLoader( 96 data_train, 97 batch_size=BATCH_SIZE, 98 shuffle=True 99 ) 100 101 # 定义测试数据集 102 data_test = torchvision.datasets.MNIST( 103 root=‘C://data/‘, 104 train=True, 105 download=False, 106 transform=transform 107 ) 108 109 # 定义测试批处理数据 110 data_test_loader = torch.utils.data.DataLoader( 111 data_test, 112 batch_size=BATCH_SIZE, 113 shuffle=False 114 ) 115 116 # 定义损失函数Loss function和优化方式(这里采用Adam) 117 net = LeNet() 118 loss_n = torch.nn.CrossEntropyLoss() # 交叉熵损失函数 119 optimizer = torch.optim.Adam(net.parameters()) 120 121 # 训练 122 for epoch in range(EPOCH): 123 sum_loss = 0.0 124 # 读取数据 125 for i, data in enumerate(data_train_loader): 126 inputs, labels = data 127 inputs, labels = Variable(inputs), Variable(labels) 128 129 # 梯度清理 130 optimizer.zero_grad() 131 132 # forward + backward 133 outputs = net(inputs) # 预测数据 134 loss = loss_n(outputs, labels) # 预测数据与实际数据做交叉熵 135 loss.backward() 136 optimizer.step() # 后向传播过后对模型进行更新 137 138 # 每100个batch打印一次平均loss 139 sum_loss += loss.item() # ??????????? 140 if i % 100 == 99: 141 print(‘[%d,%d] loss:%.03f‘ % (epoch + 1, i + 1, sum_loss / 100)) 142 sum_loss = 0.0 # 打印并且重置 143 144 # 每次运行一次epoch打印一次正确率 145 with torch.no_grad(): 146 correct = 0 147 total = 0 148 for data in data_test_loader: 149 images, labels = data 150 images, labels = Variable(images), Variable(labels) 151 outputs = net(images) 152 # 取得分最高的那个类 153 _, predicted = torch.max(outputs.data, 1) 154 total += labels.size(0) 155 correct += (predicted == labels).sum() 156 print(‘第%d个epoch的识别准确率为:%d%%‘ % (epoch + 1, (100 * correct / total))) 157 # torch.save(net.state_dict(), ‘%s/net_%03d.pth‘ % (opt.outf, epoch + 1))
‘‘‘ 基于SGD优化函数识别MNIST数据集 ‘‘‘ import torch import torchvision as tv import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import argparse # 定义是否使用GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义网络结构 ‘‘‘ 神经网络层级结构: 卷积层Conv1,Conv2() 最大池化层 MaxPool2d() 损失函数 ReLU() 参数: 卷积神经网络的卷积层参数:------输入通道数、输出通道数、卷积核大小、卷积核移动步长和Padding的值 Conv2d(input_channels,output_channels,kernel_size,stride,padding); 最大池化层参数:------池化窗口大小、移动步长 MaxPool2d(kernel_size,stride) 方法: 1.torch.nn.Sequential()用作参数序列化,神经网络模块会按照传入Suquential构造器顺序依次被添加到计算图中执行 2.torch.nn.Linear(x,y)用作对矩阵线性变换,对于一个a*x大小的矩阵,变换后会变成a*y大小的矩阵,即矩阵的乘法 ‘‘‘ class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() # 卷积层1 self.conv1 = nn.Sequential( # input_size=(1*28*28) nn.Conv2d(1, 6, 5, 1, 2), # padding=2保证输入输出尺寸相同 nn.ReLU(), # input_size=(6*28*28) nn.MaxPool2d(kernel_size=2, stride=2), # output_size=(6*14*14) ) # 卷积层2 self.conv2 = nn.Sequential( nn.Conv2d(6, 16, 5), nn.ReLU(), # input_size=(16*10*10) nn.MaxPool2d(2, 2) # output_size=(16*5*5) ) # 全连接层1 self.fc1 = nn.Sequential( nn.Linear(16 * 5 * 5, 120), nn.ReLU() ) # 全连接层2 self.fc2 = nn.Sequential( nn.Linear(120, 84), nn.ReLU() ) # 全连接层3 self.fc3 = nn.Linear(84, 10) # 定义前向传播过程,输入为x def forward(self, x): x = self.conv1(x) x = self.conv2(x) # nn.Linear()的输入输出都是维度为一的值,所以要把多维度的tensor展平成一维 x = x.view(x.size()[0], -1) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x # 使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多 parser = argparse.ArgumentParser() parser.add_argument(‘--outf‘, default=‘./model/‘, help=‘folder to output images and model checkpoints‘) # 模型保存路径 parser.add_argument(‘--net‘, default=‘./model/net.pth‘, help="path to netG (to continue training)") # 模型加载路径 opt = parser.parse_args() # 超参数设置 EPOCH = 8 # 遍历数据集次数 BATCH_SIZE = 64 # 批处理尺寸(batch_size) LR = 0.001 # 学习率 # 定义数据预处理方式 transform = transforms.ToTensor() # 定义训练数据集 trainset = tv.datasets.MNIST( root=‘./data/‘, train=True, download=True, transform=transform) # 定义训练批处理数据 trainloader = torch.utils.data.DataLoader( trainset, batch_size=BATCH_SIZE, shuffle=True, ) # 定义测试数据集 testset = tv.datasets.MNIST( root=‘C://data//‘, train=False, download=True, transform=transform) # 定义测试批处理数据 testloader = torch.utils.data.DataLoader( testset, batch_size=BATCH_SIZE, shuffle=False, ) # 定义损失函数loss function 和优化方式(采用SGD) net = LeNet().to(device) criterion = nn.CrossEntropyLoss() # 交叉熵损失函数,通常用于多分类问题上 optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 训练 if __name__ == "__main__": for epoch in range(EPOCH): sum_loss = 0.0 # 数据读取 for i, data in enumerate(trainloader): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # 梯度清零 optimizer.zero_grad() # forward + backward outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 每训练100个batch打印一次平均loss sum_loss += loss.item() if i % 100 == 99: print(‘[%d, %d] loss: %.03f‘ % (epoch + 1, i + 1, sum_loss / 100)) sum_loss = 0.0 # 每跑完一次epoch测试一下准确率 with torch.no_grad(): correct = 0 total = 0 for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) # 取得分最高的那个类 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print(‘第%d个epoch的识别准确率为:%d%%‘ % (epoch + 1, (100 * correct / total))) # torch.save(net.state_dict(), ‘%s/net_%03d.pth‘ % (opt.outf, epoch + 1))
原文:https://www.cnblogs.com/Rebel3/p/11930564.html