首页 > 其他 > 详细

Pytorch中nn.Dropout2d的作用

时间:2019-11-27 19:11:22      阅读:1282      评论:0      收藏:0      [点我收藏+]

Pytorch中nn.Dropout2d的作用

首先,关于Dropout方法,这篇博文有详细的介绍。简单来说,

我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征

dropout方法有很多类型,图像处理中最常用的是Dropout2d,我从网上找了很多的中文资料,都没有让人满意的介绍,意外发现源代码dropout.py中的介绍还挺好的:

Randomly zero out entire channels:A channel is a 2D feature map.
Each channel will be zeroed out independently on every forward call with probability :attr:`p` using samples from a Bernoulli distribution

它是适用于有多个channel的二维输出的

Pytorch中nn.Dropout2d的作用

原文:https://www.cnblogs.com/jiading/p/11944470.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!