首页 > 其他 > 详细

完本(整理)

时间:2019-11-30 22:28:06      阅读:78      评论:0      收藏:0      [点我收藏+]
  1. 求和\[ \sum_{k=0}^n k {n \choose k} \]
    解法:\[ \begin{align} (x = 1 时)\sum_{k=0}^n k {n \choose k} & = \sum_{k=0}^n {n \choose k}\frac{\partial}{\partial x} x^k = \frac{\partial}{\partial x} \sum_{k=0}^n {n \choose k} x^k = n(x+1)^{n-1} = n 2^{n-1} \end{align} \]
  2. 求和\[ \sum_{k=0}^n k^2 {n \choose k} \]
    解法:\[ \begin{align} (x = 1 时)\sum_{k=0}^n k^2 {n \choose k} & = \sum_{k=0}^n {n \choose k}\frac{\partial}{\partial x} x \frac{\partial}{\partial x} x^k = \frac{\partial}{\partial x} x \frac{\partial}{\partial x} \sum_{k=0}^n {n \choose k} x^k = …… \end{align} \]

完本(整理)

原文:https://www.cnblogs.com/buzhiyusheng/p/11946092.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!