首页 > 其他 > 详细

AI基础之展示

时间:2019-12-01 21:18:48      阅读:56      评论:0      收藏:0      [点我收藏+]

  在训练完网络后,我们需要将需要识别的图片输入模型中并输出结果,下面是具体代码。

import torch
from PIL import Image
import torchvision.transforms as trans
def testImage():
net = torch.load("models/net.pth")
img = Image.open("images/car.jpg")
transform = trans.Compose([
trans.Resize(32),
trans.CenterCrop(32),
trans.ToTensor(),
trans.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010))
])
img = transform(img).unsqueeze(0)
output = net(img.cuda())
classes = (‘plane‘,‘car‘, ‘bird‘,‘cat‘,‘deer‘,‘dog‘,‘frog‘,‘horse‘,‘ship‘,‘truck‘)
index = output.argmax(1)
print("预测结果是:{0}".format(classes[index]))

testImage()

AI基础之展示

原文:https://www.cnblogs.com/wangyueyyy/p/11967376.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!