import requests
#1.指定url
url = 'https://www.sogou.com/'
#2.发起请求,get的返回值是一个响应对象
response = requests.get(url)
#3.获取响应数据,text属性返回的是字符串形式的响应数据
page_text = response.text
#4,持久化存储
with open('./sogou.html','w',encoding='utf-8') as fp:
fp.write(page_text)
url = 'https://www.sogou.com/web?query=人民币'
response = requests.get(url)
page_text = response.text
with open('./人民币.html','w',encoding='utf-8') as fp:
fp.write(page_text)
url = 'https://www.sogou.com/web?query=人民币'
response = requests.get(url)
#修改响应数据的编码格式
response.encoding = 'utf-8'
page_text = response.text
with open('./人民币.html','w',encoding='utf-8') as fp:
fp.write(page_text)
处理数据量级的问题:
遇到了对应的反爬机制
反爬机制:UA检测
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36'
# 代理用户信息,这个数据时浏览器的信息,是请求数据的头部信息,
反反爬策略:UA伪装
UA伪装的实现:
UA检测被作用到了大量的网站中,因此日后,爬虫程序编写中一定要直接加上UA的操作
url = 'https://www.sogou.com/web?query=人民币'
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36'
}
response = requests.get(url,headers=headers)#UA伪装
#修改响应数据的编码格式
response.encoding = 'utf-8'
page_text = response.text
with open('./人民币.html','w',encoding='utf-8') as fp:
fp.write(page_text)
url = 'https://www.sogou.com/web'
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36'
}
#参数动态化
wd = input('enter a key word:')
param = {
'query':wd
}
response = requests.get(url,headers=headers,params=param)#UA伪装
#修改响应数据的编码格式
response.encoding = 'utf-8'
page_text = response.text
fileName = wd+'.html'
with open(fileName,'w',encoding='utf-8') as fp:
fp.write(page_text)
print(fileName,'爬取成功!!!')
enter a key word:波晓张
波晓张.html 爬取成功!!!
url = 'https://movie.douban.com/j/chart/top_list'
fp = open('./movieData.txt','a+',encoding='utf-8')
for i in range(0,10):
param = {
'type': '13',
'interval_id': '100:90',
'action': '',
'start': str(i*20),
'limit': '20',
}
response = requests.get(url=url,params=param,headers=headers)
#json()将json串进行序列化
movie_list = response.json()
for dic in movie_list:
name = dic['title']
score = dic['score']
fp.write(name+':'+score+'\n')
print('第{}页数据爬取成功!'.format(i))
fp.close()
第0页数据爬取成功!
第1页数据爬取成功!
第2页数据爬取成功!
第3页数据爬取成功!
第4页数据爬取成功!
第5页数据爬取成功!
第6页数据爬取成功!
第7页数据爬取成功!
第8页数据爬取成功!
第9页数据爬取成功!
import requests
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36'
}
data = {
'cname': '',
'pid': '',
'keyword': '广州',
'pageIndex': '1',
'pageSize': '10',
}
url = 'http://www.kfc.com.cn/kfccda/ashx/GetStoreList.ashx?op=keyword'
response = requests.post(url=url,headers=headers,data=data)
pos_data = response.json()
pos_data
{'Table': [{'rowcount': 27}],
'Table1': [{'addressDetail': '广州路104号',
'cityName': '南京市',
'pro': '24小时,Wi-Fi,点唱机,店内参观,礼品卡,生日餐会',
'provinceName': '江苏省',
'rownum': 1,
'storeName': '广州'},
{'addressDetail': '天河路123号广州购书中心负一层',
'cityName': '广州市',
'pro': '24小时,Wi-Fi,点唱机,礼品卡',
'provinceName': '广东省',
'rownum': 2,
'storeName': '购书中心'},
{'addressDetail': '广州南站三楼B区餐饮夹层(B26-B27检票口上方)',
'cityName': '广州市',
'pro': '礼品卡',
'provinceName': '广东省',
'rownum': 3,
'storeName': '南站二'},
{'addressDetail': '小谷围广州大学城广州大学生活区商业中心首层A1028及二层A2009',
'cityName': '广州市',
'pro': '24小时,Wi-Fi,点唱机,店内参观,礼品卡',
'provinceName': '广东省',
'rownum': 4,
'storeName': '大学城'},
]}
#获取企业id
ids = [] #存储所有企业的id
url = 'http://125.35.6.84:81/xk/itownet/portalAction.do?method=getXkzsList'
for page in range(1,6):
data = {
'on': 'true',
'page': str(page),
'pageSize': '15',
'productName': '',
'conditionType': '1',
'applyname': '',
'applysn': '',
}
company_datas_json = requests.post(url=url,headers=headers,data=data).json()
for dic in company_datas_json['list']:
_id = dic['ID']
ids.append(_id)
detail_url = 'http://125.35.6.84:81/xk/itownet/portalAction.do?method=getXkzsById'
for _id in ids:
data = {
'id':_id
}
company_json = requests.post(url=detail_url,headers=headers,data=data).json()
print(company_json['epsName'],company_json['epsProductAddress'])
亳州嘉禾药业有限公司 安徽省亳州市谯城区三官工业街168号
倍斯柔(广东)生物科技有限公司 佛山市三水区乐平镇西乐大道东39号登骏数码城二期厂房B3号301A、401A、501A单元(住所申报)
佛山市方方洁生物科技有限公司 广东省佛山市南海区丹灶镇塱心工业区吴伟升厂房自编A座1楼、2楼(住所申报)
青岛尚合生物科技有限公司 山东省青岛市莱西市夏格庄文昌路8号
山东暨肽生物医药科技有限公司 山东省烟台市福山区振华街879号
淳安千岛湖诚达实业有限公司 浙江省杭州市淳安县千岛湖镇永和路321号1幢2楼
浙江好妆化妆品有限公司 浙江省金华市义乌市廿三里街道安商路37号
美尚美生物技术(广州)有限公司 广州市花都区花山镇启源大道6号4栋304房
广州市联盈日用化妆品有限公司 广州市花都区赤坭镇白坭经济社内
浙江绿岛科技有限公司 海润街道工业大道5号
广州市三荣化妆品有限公司 广州市白云区江高镇塘荔路3号A1栋、B栋
广州市欣俊颜化妆品有限公司 广州市白云区白云湖街夏茅向西大道十九社工业区自编一号五楼
广州甲美生物科技有限公司 广州市白云区均禾街石马村旺发大街自编25号
广州卡丝蓝化妆品有限公司 广州市白云区江高镇神山雄郭西路128号3栋101房、201房
广州市绿色春天化妆品科技研发有限公司 广州市白云区均禾街罗岗工业区企业路23号
原文:https://www.cnblogs.com/zhufanyu/p/11972800.html