https://www.jianshu.com/p/848014d8dea9
https://www.pyimagesearch.com/2017/05/01/install-dlib-raspberry-pi/
库下载
https://github.com/davisking/dlib
表情识别教程
https://www.cnblogs.com/qsyll0916/p/8893790.html
识别代码
https://gitee.com/Andrew_Qian/face/blob/master/from_video.py
依赖权重
面部表情跟踪的原理就是检测人脸特征点,根据特定的特征点可以对应到特定的器官,比如眼睛、鼻子、嘴巴、耳朵等等,以此来跟踪各个面部器官的动作。
https://blog.csdn.net/hongbin_xu/article/details/79926839
dlib需要以下依赖:
$ sudo apt-get update
$ sudo apt-get install build-essential cmake libgtk-3-dev libboost-all-dev -y
$ pip3 install numpy
$ pip3 install scipy
$ pip3 install scikit-image
解压下载好的dlib,进入dlib目录后
$ sudo python3 setup.py install
这一步耗时是最长的了,耐心等待。
$ python3
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import dlib
>>>
修改方法见“二、修改前的准备工作”
收工。
python代码
#!Anaconda/anaconda/python #coding: utf-8 """ 从视屏中识别人脸,并实时标出面部特征点 """ import dlib #人脸识别的库dlib import numpy as np #数据处理的库numpy import cv2 #图像处理的库OpenCv class face_emotion(): def __init__(self): # 使用特征提取器get_frontal_face_detector self.detector = dlib.get_frontal_face_detector() # dlib的68点模型,使用作者训练好的特征预测器 self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") #建cv2摄像头对象,这里使用电脑自带摄像头,如果接了外部摄像头,则自动切换到外部摄像头 self.cap = cv2.VideoCapture(0) # 设置视频参数,propId设置的视频参数,value设置的参数值 self.cap.set(3, 480) # 截图screenshoot的计数器 self.cnt = 0 def learning_face(self): # 眉毛直线拟合数据缓冲 line_brow_x = [] line_brow_y = [] # cap.isOpened() 返回true/false 检查初始化是否成功 while(self.cap.isOpened()): # cap.read() # 返回两个值: # 一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾 # 图像对象,图像的三维矩阵 flag, im_rd = self.cap.read() # 每帧数据延时1ms,延时为0读取的是静态帧 k = cv2.waitKey(1) # 取灰度 img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY) # 使用人脸检测器检测每一帧图像中的人脸。并返回人脸数rects faces = self.detector(img_gray, 0) # 待会要显示在屏幕上的字体 font = cv2.FONT_HERSHEY_SIMPLEX # 如果检测到人脸 if(len(faces)!=0): # 对每个人脸都标出68个特征点 for i in range(len(faces)): # enumerate方法同时返回数据对象的索引和数据,k为索引,d为faces中的对象 for k, d in enumerate(faces): # 用红色矩形框出人脸 cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 0, 255)) # 计算人脸热别框边长 self.face_width = d.right() - d.left() # 使用预测器得到68点数据的坐标 shape = self.predictor(im_rd, d) # 圆圈显示每个特征点 for i in range(68): cv2.circle(im_rd, (shape.part(i).x, shape.part(i).y), 2, (0, 255, 0), -1, 8) #cv2.putText(im_rd, str(i), (shape.part(i).x, shape.part(i).y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, # (255, 255, 255)) # 分析任意n点的位置关系来作为表情识别的依据 mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width # 嘴巴咧开程度 mouth_higth = (shape.part(66).y - shape.part(62).y) / self.face_width # 嘴巴张开程度 # print("嘴巴宽度与识别框宽度之比:",mouth_width_arv) # print("嘴巴高度与识别框高度之比:",mouth_higth_arv) # 通过两个眉毛上的10个特征点,分析挑眉程度和皱眉程度 brow_sum = 0 # 高度之和 frown_sum = 0 # 两边眉毛距离之和 for j in range(17, 21): brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top()) frown_sum += shape.part(j + 5).x - shape.part(j).x line_brow_x.append(shape.part(j).x) line_brow_y.append(shape.part(j).y) # self.brow_k, self.brow_d = self.fit_slr(line_brow_x, line_brow_y) # 计算眉毛的倾斜程度 tempx = np.array(line_brow_x) tempy = np.array(line_brow_y) z1 = np.polyfit(tempx, tempy, 1) # 拟合成一次直线 self.brow_k = -round(z1[0], 3) # 拟合出曲线的斜率和实际眉毛的倾斜方向是相反的 brow_hight = (brow_sum / 10) / self.face_width # 眉毛高度占比 brow_width = (frown_sum / 5) / self.face_width # 眉毛距离占比 # print("眉毛高度与识别框高度之比:",round(brow_arv/self.face_width,3)) # print("眉毛间距与识别框高度之比:",round(frown_arv/self.face_width,3)) # 眼睛睁开程度 eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y + shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y) eye_hight = (eye_sum / 4) / self.face_width # print("眼睛睁开距离与识别框高度之比:",round(eye_open/self.face_width,3)) # 分情况讨论 # 张嘴,可能是开心或者惊讶 if round(mouth_higth >= 0.03): if eye_hight >= 0.056: cv2.putText(im_rd, "amazing", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) else: cv2.putText(im_rd, "happy", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) # 没有张嘴,可能是正常和生气 else: if self.brow_k <= -0.3: cv2.putText(im_rd, "angry", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) else: cv2.putText(im_rd, "nature", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) # 标出人脸数 cv2.putText(im_rd, "Faces: "+str(len(faces)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA) else: # 没有检测到人脸 cv2.putText(im_rd, "No Face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA) # 添加说明 im_rd = cv2.putText(im_rd, "S: screenshot", (20, 400), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA) im_rd = cv2.putText(im_rd, "Q: quit", (20, 450), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA) # 按下s键截图保存 if (k == ord(‘s‘)): self.cnt+=1 cv2.imwrite("screenshoot"+str(self.cnt)+".jpg", im_rd) # 按下q键退出 if(k == ord(‘q‘)): break # 窗口显示 cv2.imshow("camera", im_rd) # 释放摄像头 self.cap.release() # 删除建立的窗口 cv2.destroyAllWindows() if __name__ == "__main__": my_face = face_emotion() my_face.learning_face()
# *_*coding:utf-8 *_* # author: 许鸿斌 import sys import cv2 import dlib import os import logging import datetime import numpy as np def cal_face_boundary(img, shape): for index_, pt in enumerate(shape.parts()): if index_ == 0: x_min = pt.x x_max = pt.x y_min = pt.y y_max = pt.y else: if pt.x < x_min: x_min = pt.x if pt.x > x_max: x_max = pt.x if pt.y < y_min: y_min = pt.y if pt.y > y_max: y_max = pt.y # print(‘x_min:{}‘.format(x_min)) # print(‘x_max:{}‘.format(x_max)) # print(‘y_min:{}‘.format(y_min)) # print(‘y_max:{}‘.format(y_max)) # 如果出现负值,即人脸位于图像框之外的情况,应当忽视图像外的部分,将负值置为0 if x_min < 0: x_min = 0 if y_min < 0: y_min = 0 if x_min == x_max or y_min == y_max: return None else: return img[y_min:y_max, x_min:x_max] def draw_left_eyebrow(img, shape): # 17 - 21 pt_pos = [] for index, pt in enumerate(shape.parts()[17:21 + 1]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos)-1): cv2.line(img, pt_pos[num], pt_pos[num+1], 255, 2) def draw_right_eyebrow(img, shape): # 22 - 26 pt_pos = [] for index, pt in enumerate(shape.parts()[22:26 + 1]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos) - 1): cv2.line(img, pt_pos[num], pt_pos[num + 1], 255, 2) def draw_left_eye(img, shape): # 36 - 41 pt_pos = [] for index, pt in enumerate(shape.parts()[36:41 + 1]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos) - 1): cv2.line(img, pt_pos[num], pt_pos[num + 1], 255, 2) cv2.line(img, pt_pos[0], pt_pos[-1], 255, 2) def draw_right_eye(img, shape): # 42 - 47 pt_pos = [] for index, pt in enumerate(shape.parts()[42:47 + 1]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos) - 1): cv2.line(img, pt_pos[num], pt_pos[num + 1], 255, 2) cv2.line(img, pt_pos[0], pt_pos[-1], 255, 2) def draw_nose(img, shape): # 27 - 35 pt_pos = [] for index, pt in enumerate(shape.parts()[27:35 + 1]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos) - 1): cv2.line(img, pt_pos[num], pt_pos[num + 1], 255, 2) cv2.line(img, pt_pos[0], pt_pos[4], 255, 2) cv2.line(img, pt_pos[0], pt_pos[-1], 255, 2) cv2.line(img, pt_pos[3], pt_pos[-1], 255, 2) def draw_mouth(img, shape): # 48 - 59 pt_pos = [] for index, pt in enumerate(shape.parts()[48:59 + 1]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos) - 1): cv2.line(img, pt_pos[num], pt_pos[num + 1], 255, 2) cv2.line(img, pt_pos[0], pt_pos[-1], 255, 2) # 60 - 67 pt_pos = [] for index, pt in enumerate(shape.parts()[60:]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos) - 1): cv2.line(img, pt_pos[num], pt_pos[num + 1], 255, 2) cv2.line(img, pt_pos[0], pt_pos[-1], 255, 2) def draw_jaw(img, shape): # 0 - 16 pt_pos = [] for index, pt in enumerate(shape.parts()[0:16 + 1]): pt_pos.append((pt.x, pt.y)) for num in range(len(pt_pos) - 1): cv2.line(img, pt_pos[num], pt_pos[num + 1], 255, 2) # 获取logger实例,如果参数为空则返回root logger logger = logging.getLogger("PedestranDetect") # 指定logger输出格式 formatter = logging.Formatter(‘%(asctime)s %(levelname)-8s: %(message)s‘) # 文件日志 # file_handler = logging.FileHandler("test.log") # file_handler.setFormatter(formatter) # 可以通过setFormatter指定输出格式 # 控制台日志 console_handler = logging.StreamHandler(sys.stdout) console_handler.formatter = formatter # 也可以直接给formatter赋值 # 为logger添加的日志处理器 # logger.addHandler(file_handler) logger.addHandler(console_handler) # 指定日志的最低输出级别,默认为WARN级别 logger.setLevel(logging.INFO) pwd = os.getcwd() predictor_path = os.path.join(pwd, ‘shape_predictor_68_face_landmarks.dat‘) logger.info(u‘导入人脸检测器‘) detector = dlib.get_frontal_face_detector() logger.info(u‘导入人脸特征点检测器‘) predictor = dlib.shape_predictor(predictor_path) cap = cv2.VideoCapture(0) cnt = 0 total_time = 0 start_time = 0 while(1): ret, frame = cap.read() # cv2.imshow("window", frame) if cv2.waitKey(1) & 0xFF == ord(‘q‘): break img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) dets = detector(img, 1) if dets: logger.info(‘Face detected‘) else: logger.info(‘No face detected‘) for index, face in enumerate(dets): # print(‘face {}; left {}; top {}; right {}; bottom {}‘.format(index, face.left(), face.top(), face.right(), # face.bottom())) shape = predictor(img, face) # for index_, pt in enumerate(shape.parts()): # pt_pos = (pt.x, pt.y) # cv2.circle(frame, pt_pos, 2, (255, 0, 0), 1) features = np.zeros(img.shape[0:-1], dtype=np.uint8) for index_, pt in enumerate(shape.parts()): pt_pos = (pt.x, pt.y) cv2.circle(features, pt_pos, 2, 255, 1) draw_left_eyebrow(features, shape) draw_right_eyebrow(features, shape) draw_left_eye(features, shape) draw_right_eye(features, shape) draw_nose(features, shape) draw_mouth(features, shape) draw_jaw(features, shape) logger.info(‘face shape: {} {}‘.format(face.right()-face.left(), face.bottom()-face.top())) faceROI = cal_face_boundary(features, shape) logger.info(‘ROI shape: {}‘.format(faceROI.shape)) # faceROI = features[face.top():face.bottom(), face.left():face.right()] faceROI = cv2.resize(faceROI, (500, 500), interpolation=cv2.INTER_LINEAR) # logger.info(‘face {}‘.format(index)) cv2.imshow(‘face {}‘.format(index), faceROI) if cnt == 0: start_time = datetime.datetime.now() cnt += 1 elif cnt == 100: end_time = datetime.datetime.now() frame_rate = float(100) / (end_time-start_time).seconds # logger.info(start_time) # logger.info(end_time) logger.info(u‘帧率:{:.2f}fps‘.format(frame_rate)) cnt = 0 else: cnt += 1 # logger.info(cnt)
原文:https://www.cnblogs.com/kekeoutlook/p/11986625.html