首页 > 移动平台 > 详细

Appendix 2- Lebesgue integration and Reimann integration

时间:2019-12-06 13:57:01      阅读:82      评论:0      收藏:0      [点我收藏+]

Lebesgue integration and Reimann integration

Reimann: Split up the axis into equal intervals, then approximate the function within each interval, add up all of those approximate values, and then let the quantization over the time axis become finer.

 

Lebesgue: Split up the other axis. Start with a zero, quantize into epsilon, 2 epsilon, 3 epsilon and so forth. Making epsilon smaller enough. Lower bound.

技术分享图片

 

 

Rules:

  • l  Whenever the Riemann integral exists, the Lebesgue integral also exists and has the same value.
  • l  The familiar rules for calculating Riemann integrals also apply for Lebesgue integrals.
  • l  For some very weird functions, the Lebesgue integral exists, but the Riemann integral does not. (i.e., Dirichlet function)
  • l  There are also exceptionally weird functions for which not even the Lebesgue integral exists.

 

Appendix 2- Lebesgue integration and Reimann integration

原文:https://www.cnblogs.com/yangyang827847/p/11994525.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!