课程:《程序设计与数据结构》
班级: 1823
姓名: 张子正
学号:20182304
实验教师:王志强
实验日期:2019年12月7日
必修/选修: 必修
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
public class Graph {
//节点个数
private static int number = 8;
//创立访问标志数组的布尔型数组
private boolean[] flag;
//创立要遍历节点的数组
private int[] num= {1,2,3,4,5,6,7,8};
//创立这几个数字的邻接矩阵
private int[][] edges = {
/*{0, 1, 1, 0, 0, 0, 0, 0},
{1, 0, 0, 1, 1, 0, 0, 0},
{1, 0, 0, 0, 0, 1, 1, 0},
{0, 1, 0, 0, 0, 0, 0, 1},
{0, 1, 0, 0, 0, 0, 0, 1},
{0, 0, 1, 0, 0, 0, 1, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 0, 1, 1, 0, 0, 0},*/
{0, 1, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0},
};
void DFSTraverse() {
//设置一个和数字个数同等大小的布尔数组
flag = new boolean[number] ;
//从顶点开始,实现深度遍历
for (int i = 0; i < number; i++) {
if (flag[i] == false) {
// 如果当前顶点没有被访问,进入DFS
DFS(i);
}
}
}
//完成一次遍历,直到后面无连接节点
void DFS(int i) {
// 标记第num[i]个节点被访问
flag[i] = true;
//将该节点打印
System.out.print(num[i] + " ");
//寻找与num[i]节点相连的下一个访问节点
for (int j = 0; j < number; j++) {
//从标志数组第0位开始顺序查找,如果这一点未被访问,且与第num[i]个节点相连
if (flag[j] == false && edges[i][j] == 1) {
//递归
DFS(j);
}
}
}
void DFS_Map(){
flag = new boolean[number];
Stack<Integer> stack =new Stack<Integer>();
for(int i=0;i<number;i++){
if(flag[i]==false){
flag[i]=true;
System.out.print(num[i]+" ");
stack.push(i);
}
while(!stack.isEmpty()){
int k = stack.pop();
for(int j=0;j<number;j++){
if(edges[k][j]==1&&flag[j]==false){
flag[j]=true;
System.out.print(num[j]+" ");
stack.push(j);
break;
}
}
}
}
}
void BFS_Map(){
flag = new boolean[number];
Queue<Integer> queue = new LinkedList<Integer>();
for(int i=0;i<number;i++){
if(flag[i]==false){
flag[i]=true;
System.out.print(num[i]+" ");
queue.add(i);
while(!queue.isEmpty()){
int k=queue.poll();
for(int j=0;j<number;j++){
if(edges[k][j]==1&&flag[j]==false){
flag[j] = true;
System.out.print(num[j]+" ");
queue.add(j);
}
}
}
}
}
}
//测试类
public static void main(String[] args) {
System.out.println("有向图遍历!");
Graph graph = new Graph();
System.out.println("DFS递归:");
graph.DFSTraverse();
System.out.println();
System.out.println("DFS非递归:");
graph.DFS_Map();
System.out.println();
System.out.println("BFS非递归:");
graph.BFS_Map();
}
}
public class Dijkstra {
public static final int M = 10000; // 代表正无穷
public static void main(String[] args) {
// 二维数组每一行分别是 A、B、C、D、E 各点到其余点的距离,
// A -> A 距离为0, 常量M 为正无穷
int[][] weight1 = {
{0, 13, 8, M, 30, M, 32},
{M, 0, M, M, M, 9, 7 },
{M, M, 0, 5, M, M , M},
{M, M, M, 0, 6, M , M},
{M, M, M, M, 0, 2 , M},
{M, M, M, M, M, 0 ,17},
{M, M, M, M, M, M , 0},
};
int start = 0;
int[] shortPath = dijkstra(weight1, start);
for (int i = 0; i < shortPath.length; i++)
System.out.println("从" + start + "出发到" + i + "的最短距离为:" + shortPath[i]);
}
public static int[] dijkstra(int[][] weight, int start) {
// 接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
// 返回一个int[] 数组,表示从start到它的最短路径长度
int n = weight.length; // 顶点个数
int[] shortPath = new int[n]; // 保存start到其他各点的最短路径
String[] path = new String[n]; // 保存start到其他各点最短路径的字符串表示
for (int i = 0; i < n; i++)
path[i] = new String(start + "-->" + i);
int[] visited = new int[n]; // 标记当前该顶点的最短路径是否已经求出,1表示已求出
// 初始化,第一个顶点已经求出
shortPath[start] = 0;
visited[start] = 1;
for (int count = 1; count < n; count++) { // 要加入n-1个顶点
int k = -1; // 选出一个距离初始顶点start最近的未标记顶点
int dmin = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if (visited[i] == 0 && weight[start][i] < dmin) {
dmin = weight[start][i];
k = i;
}
}
// 将新选出的顶点标记为已求出最短路径,且到start的最短路径就是dmin
shortPath[k] = dmin;
visited[k] = 1;
// 以k为中间点,修正从start到未访问各点的距离
for (int i = 0; i < n; i++) {
//如果 '起始点到当前点距离' + '当前点到某点距离' < '起始点到某点距离', 则更新
if (visited[i] == 0 && weight[start][k] + weight[k][i] < weight[start][i]) {
weight[start][i] = weight[start][k] + weight[k][i];
path[i] = path[k] + "-->" + i;
}
}
}
for (int i = 0; i < n; i++) {
System.out.println("从" + start + "出发到" + i + "的最短路径为:" + path[i]);
}
System.out.println("=====================================");
return shortPath;
}
}
原文:https://www.cnblogs.com/acgacg/p/12007950.html