首页 > 其他 > 详细

用MATLAB的Classficiation Learner工具箱对12个数据集进行各种分类与验证

时间:2019-12-09 11:41:33      阅读:255      评论:0      收藏:0      [点我收藏+]

准备材料

  技术分享图片

  以所有的特征集作为variable进行像Bayes吖、SVM吖、决策树吖......分类。同时对数据进行预处理,选出相关度高的特征子集作为新的一组data进行分类(预处理的代码不必放出来)。

Classficiation Learner工具箱的使用

  从应用程序(APP)栏下的机器学习和深度学习可以get。

  技术分享图片

  NEW Session,从工作空间导入数据集。

  技术分享图片

  Start Session。

  技术分享图片

   选择分类器进行train。

  技术分享图片

结果

  AUC 值越大,说明该模型的性能越好。

  以CM1为例:

  原始特征集、决策树

  技术分享图片
  原始特征集、SVM

  技术分享图片

  特征子集、决策树

  技术分享图片

  特征子集、SVM

  技术分享图片

   全部数据的结果统计:

  技术分享图片

  其中,百分数表示经过十次十折交叉验证进行循环测试,最后返回的准确率;分号右边表示计算得到的AUC大小。

  从中我们可以看到像JM1、MC1、PC5这些数据量大的数据集,最后得到的计算结果相对较好,而对于一些数据量较小的数据集,训练出的结果部分存在差距。

用MATLAB的Classficiation Learner工具箱对12个数据集进行各种分类与验证

原文:https://www.cnblogs.com/fangxiaoqi/p/12008833.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!