首页 > 其他 > 详细

J.U.C剖析与解读2(AQS的由来)

时间:2019-12-12 09:47:00      阅读:64      评论:0      收藏:0      [点我收藏+]

J.U.C剖析与解读2(AQS的由来)

前言

前面已经通过实现自定义ReentrantLock与自定义ReentrantReadWriteLock,展示了JDK是如何实现独占锁与共享锁的。

那么实际JDK源码中的ReentrantLock与ReentrantReadWritreLock是如何实现的呢?我们现有的自定义代码是否可以更进一步呢?

答案是肯定的。注意看我之前两个Lock的朋友,应该注意到了。自定义ReentrantReadWriteLock的独占锁部分,其实和自定义ReentrantLock是几乎一样的。

也就是说,不同Lock其实现是差不多的。那么是否可以提取公共的部分,是否可以写得更加优雅一些。

那么这篇博客,就是通过提取公共代码,引入模板方法设计模式,并利用Java的一些特性,写出一个自定义的AQS。

当然,最后也会剖析源码中AQS实现与我们自定义AQS的差别所在,并解读源码AQS中一些高级应用,如AQS通过一个state实现读写锁的持有数量(居然通过一个int值的CAS操作,解决了自定义读写锁持有数量的独占操作)。

如果看过源码的朋友,会发现源码中的ReentrantLock会自定义一个Sync,该Sync会继承一个AbstratQueueSynchronizer(简称AQS)。然后源码中的ReentrantLock的tryLock等方法,则是调用Sync的对应子类(FairSync或NonFairSync,也就是是否为公平锁)来实现对应功能。并且,只有tryAcquire与lock两个方法是由ReentrantLock实现的,其它方法是由AQS提供的。lock是由FairSync与NonFairSync分别实现的。而tryAcquire是由FairSync与NonFairSync父类的Sync实现,NonFairSync的tryLock直接调用父类Sync的nonfairTryAcquire方法。

而ReentrantReadWriteLock则是增加了ReadLock与WriteLock,其实现,则是调用Sync的不同方法而已。

有的小伙伴,会觉得这样的关系很复杂,明明一个锁就比较复杂了,还搞得这么抽象。提取一个AQS就够抽象的了,每个锁还整了一个Sync,FairSync,NonFairSync内部类,视情况,还要弄个ReadLock,WriteLock这些内部类。这样做的目的其实是为了封装代码,提高代码复用性。当然,实际源码看多了,反而会觉得这样的代码,看得挺舒服的。比较符合设计理念(想想,你接收的项目中,一个类上千行代码,完全不敢修改)。

关于读源码,简单说一下我的感受。最核心的就是坚持,最重要的是全局观,最需要的是积累。

我陆陆续续阅读源码(不只是Java),也有差不多两年的经验吧。从最早的Windows内核源码,到后面的前端框架源码,到今年的Java源码阅读。最早的Windows内核源码,那真的是无知者无畏啊,简直是一段极其痛苦的经历。那时候一天可能就二十页样子,还得看运气。但是那段时间给我带来了很多,包括什么系统内存管理,内存的用户态与内核态,以及系统上下文等积累,为我后面的提升带来了很多。而后面的前端源码的阅读,也让我开始接触源码的一些思路。最后到今年的Java源码,有了去年golang一些外文博客的翻译(涉及语言设计部分)铺垫,才渐渐有了一些阅读源码的感觉(自我感觉有点上路了)。所以,最核心的是坚持。

至于全局观嘛,就是一方面很多时候源码太多,常常迷路,我们需要把握主线,以及自己的目的。如果可以有一个XMIND,或者比较不错的博客等作为指引就更好了。比如这次AQS拆分,我就是从网易云的大佬James学到的。虽然之前就有了JUC学习的积累,但是大佬的AQS拆分,确实令我对AQS有了更为深入的理解。另一方面就是需要把握自己应该研究的深度(在自己能力层级再深入一些即可),而不是抓着源码的每个字不放。我今年年初的时候,就想研究IOC源码,根据一位大佬的文章,连续啃了两三个星期。但后面陆陆续续就忘了。虽然这段经历对我依旧有着一定的积累价值(对我最近研究SpringApplication的run过程有着不错的价值),但是超出自己能力太多地撸源码,性价比就太低了。

最后就是积累,我非常看重积累。自从高三后,我就对积累这个词有了更深入的理解。很多时候,我们阅读一些书籍,研究一些原理,虽然后来感觉忘记了,但是积累还是在的。就像我学习编程时,就经常感受到大学时期的计算机网络,计算机原理,分布式课题等经历给我带来的积累。而现在很多人都过于看重即时价值(就是我立马学了,立马就要有效果),而我相信技术的攀登,是离不开经年累月的积累的。

如果大家对阅读源码,感兴趣的话,可以告诉我。可以考虑写一篇文章,来简单谈谈源码阅读这件事儿。

一,简易JUC(版本一):

这里就是将之前实现的简易版ReentrantLock与ReentrantReadWriteLock展现出来,就当是简单回顾一下。

1.JarryReentrantLock:


    package tech.jarry.learning.netease.locks2;
    
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description: 仿ReentrantLock,实现其基本功能及特性
     * @Author: jarry
     */
    public class JarryReentrantLock {
    
        private AtomicInteger count = new AtomicInteger(0);
        private AtomicReference<Thread> owner = new AtomicReference<>();
        private LinkedBlockingQueue<Thread> waiters = new LinkedBlockingQueue<>();
    
        public void lock() {
            int arg = 1;
            if (!tryLock(arg)){
                waiters.offer(Thread.currentThread());
                while (true){
                    Thread head = waiters.peek();
                    if (head == Thread.currentThread()){
                        if (!tryLock(arg)){
                            LockSupport.park();
                        } else {
                            waiters.poll();
                            return;
                        }
                    } else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        public void unlock() {
            int arg = 1;
            if (tryUnlock(arg)){
                Thread head = waiters.peek();
                if (head != null){
                    LockSupport.unpark(head);
                }
            }
        }
    
        public boolean tryLock(int acquires) {
            int countValue = count.get();
            if (countValue != 0){
                if (Thread.currentThread() == owner.get()){
                    count.set(countValue+acquires);
                    return true;
                }else{
                    return false;
                }
            }else {
                if (count.compareAndSet(countValue,countValue+acquires)){
                    owner.set(Thread.currentThread());
                    return true;
                } else {
                    return false;
                }
            }
        }
    
        private boolean tryUnlock(int releases) {
            if (Thread.currentThread() != owner.get()){
                throw new IllegalMonitorStateException();
            } else {
                int countValue = count.get();
                int countNextValue = countValue - releases;
                count.compareAndSet(countValue,countNextValue);
                if (countNextValue == 0){
                    owner.compareAndSet(Thread.currentThread(),null);
                    return true;
                } else {
                    return false;
                }
            }
        }
    
        public void lockInterruptibly() throws InterruptedException {
    
        }
    
        public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
            return false;
        }
    
        public Condition newCondition() {
            return null;
        }
    }

2.JarryReadWriteLock:


    package tech.jarry.learning.netease.locks2;
    
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class JarryReadWriteLock {
    
        volatile AtomicInteger readCount = new AtomicInteger(0);
        AtomicInteger writeCount = new AtomicInteger(0);
        AtomicReference<Thread> owner = new AtomicReference<>();
        public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>();
    
        class WaitNode{
            Thread thread = null;
            // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁)
            int type = 0;
            int arg = 0;
    
            public WaitNode(Thread thread, int type, int arg) {
                this.type = type;
                this.thread = thread;
                this.arg = arg;
            }
        }
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            int arg = 1;
            if (!tryLock(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode headNote = waiters.peek();
                    if (headNote !=null && headNote.thread == Thread.currentThread()){
                        if (!tryLock(headNote.arg)){
                            LockSupport.park();
                        } else {
                            waiters.poll();
                            return;
                        }
                    }else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            int arg = 1;
            if (tryUnlock(arg)){
                WaitNode head = waiters.peek();
                if (head == null){
                    return;
                }
                LockSupport.unpark(head.thread);
            }
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?)
         * @return
         */
        public boolean tryLock(int acquires){
            if (readCount.get() == 0){
                int writeCountValue = writeCount.get();
                if (writeCountValue == 0){
                    if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                        owner.set(Thread.currentThread());
                        return true;
                    }
                } else {
                    if (Thread.currentThread() == owner.get()){
                        writeCount.set(writeCountValue+acquires);
                        return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            if (owner.get() != Thread.currentThread()){
                throw new IllegalMonitorStateException();
            }
            int writeCountValue = writeCount.get();
            writeCount.set(writeCountValue-releases);
            if (writeCount.get() == 0){
                owner.compareAndSet(Thread.currentThread(),null);
                return true;
            } else {
                return false;
            }
        }
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            int arg = 1;
            if (!tryLockShared(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode head = waiters.peek();
                    if (head != null && head.thread == Thread.currentThread()){
                        if (tryLockShared(head.arg)){
                            waiters.poll();
    
                            WaitNode newHead = waiters.peek();
                            if (newHead != null && newHead.type == 1){
                                LockSupport.unpark(newHead.thread);
                            }
                            return;
                        } else {
                            LockSupport.park();
                        }
                    } else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            int arg = 1;
            if (tryUnLockShared(arg)){
                WaitNode head = waiters.peek();
                if (head != null){
                    LockSupport.unpark(head.thread);
                }
                return true;
            }
            return false;
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            while (true){
                if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){
                    int readCountValue = readCount.get();
                    if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){
                        return true;
                    }
                }
                return false;
            }
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            while (true){
                int readCountValue = readCount.get();
                int readCountNext = readCountValue - releases;
                if (readCount.compareAndSet(readCountValue,readCountNext)){
                    return readCountNext == 0;
                }
            }
        }
    
    }

二,简易JUC(版本二):

很明显,上面的代码中,JarryReentrantLock的tryLock等方法与JarryReadWriteLock中共享锁的tryLock等方法是类似的(本来就是从JarryReentrantLock复制过来的嘛)。那么,这里就需要引入模板方法(详见笔记《设计模式》-模板方法)。通过一个commonMask类,来提取公共方法。

1.CommonMask:


    package tech.jarry.learning.netease.locks3;
    
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class CommonMask {
    
        volatile AtomicInteger readCount = new AtomicInteger(0);
        AtomicInteger writeCount = new AtomicInteger(0);
        AtomicReference<Thread> owner = new AtomicReference<>();
        public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>();
    
        class WaitNode{
            Thread thread = null;
            // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁)
            int type = 0;
            int arg = 0;
    
            public WaitNode(Thread thread, int type, int arg) {
                this.type = type;
                this.thread = thread;
                this.arg = arg;
            }
        }
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            int arg = 1;
            if (!tryLock(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode headNote = waiters.peek();
                    if (headNote !=null && headNote.thread == Thread.currentThread()){
                        if (!tryLock(headNote.arg)){
                            LockSupport.park();
                        } else {
                            waiters.poll();
                            return;
                        }
                    }else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            int arg = 1;
            if (tryUnlock(arg)){
                WaitNode head = waiters.peek();
                if (head == null){
                    return;
                }
                LockSupport.unpark(head.thread);
            }
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?)
         * @return
         */
        public boolean tryLock(int acquires){
            if (readCount.get() == 0){
                int writeCountValue = writeCount.get();
                if (writeCountValue == 0){
                    if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                        owner.set(Thread.currentThread());
                        return true;
                    }
                } else {
                    if (Thread.currentThread() == owner.get()){
                        writeCount.set(writeCountValue+acquires);
                        return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            if (owner.get() != Thread.currentThread()){
                throw new IllegalMonitorStateException();
            }
            int writeCountValue = writeCount.get();
            writeCount.set(writeCountValue-releases);
            if (writeCount.get() == 0){
                owner.compareAndSet(Thread.currentThread(),null);
                return true;
            } else {
                return false;
            }
        }
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            int arg = 1;
            if (!tryLockShared(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode head = waiters.peek();
                    if (head != null && head.thread == Thread.currentThread()){
                        if (tryLockShared(head.arg)){
                            waiters.poll();
    
                            WaitNode newHead = waiters.peek();
                            if (newHead != null && newHead.type == 1){
                                LockSupport.unpark(newHead.thread);
                            }
                            return;
                        } else {
                            LockSupport.park();
                        }
                    } else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            int arg = 1;
            if (tryUnLockShared(arg)){
                WaitNode head = waiters.peek();
                if (head != null){
                    LockSupport.unpark(head.thread);
                }
                return true;
            }
            return false;
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            while (true){
                if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){
                    int readCountValue = readCount.get();
                    if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){
                        return true;
                    }
                }
                return false;
            }
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            while (true){
                int readCountValue = readCount.get();
                int readCountNext = readCountValue - releases;
                if (readCount.compareAndSet(readCountValue,readCountNext)){
                    return readCountNext == 0;
                }
            }
        }
    }

2.JarryReentrantLock:


    package tech.jarry.learning.netease.locks3;
    
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description: 仿ReentrantLock,实现其基本功能及特性
     * @Author: jarry
     */
    public class JarryReentrantLock {
    
        private CommonMask commonMask = new CommonMask();
    
        public void lock() {
            commonMask.lock();
        }
    
        public void unlock() {
            commonMask.unlock();
        }
    
        public boolean tryLock(int acquire) {
            return commonMask.tryLock(acquire);
        }
    
        private boolean tryUnlock(int release) {
            return commonMask.tryUnlock(release);
        }
    }

3.JarryReadWriteLock:


    package tech.jarry.learning.netease.locks3;
    
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class JarryReadWriteLock {
    
        private CommonMask commonMask = new CommonMask();
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            commonMask.lock();
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            commonMask.unlock();
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?)
         * @return
         */
        public boolean tryLock(int acquires){
            return commonMask.tryLock(acquires);
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            return commonMask.tryUnlock(releases);
        }
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            commonMask.lockShared();
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            return commonMask.unLockShared();
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            return tryLockShared(acquires);
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            return commonMask.tryUnLockShared(releases);
        }
    
    }

到了这里,大家就可以明显看出,总体代码量的下降(这还只是两个Lock)。但是问题也出来了,那就是这样将所有方法都放在父类CommonMask,子类进行调用,是不是显得过于死板(说得直接点,就是这种操作,完全就是将代码往父类一抛而已)。这说明,之前代码公共提取做得并不好。

重新整理思路,JarryReentrantLock与JarryReadWriteLock的共同之处到底在哪里。细想一下,发现这两个方法的lock,unlock等操作是一致的,只是实际的运行逻辑方法tryLock,tryUnlock,tryLockShared,tryUnLockShared四个方法(在框架源码中,常常用doxxx方法,表示实际运行逻辑的方法)。所以CommonMask应该实现的是这四个方法之外的方法,而这四个方法交由子类,来根据具体需要来实现(CommonMask中,这四个方法直接抛出对应异常)。

最后,ReentrantLock是有公平锁,非公平锁之分的。而通过上面的调整,现在的JarryReentrantLock可以实现自己对应方法,来展现特性(公平锁/非公平锁的选择)了。

三,简易JUC(版本三):

1.CommonMask:


    package tech.jarry.learning.netease.locks4;
    
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class CommonMask {
    
        volatile AtomicInteger readCount = new AtomicInteger(0);
        AtomicInteger writeCount = new AtomicInteger(0);
        AtomicReference<Thread> owner = new AtomicReference<>();
        public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>();
    
        class WaitNode{
            Thread thread = null;
            // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁)
            int type = 0;
            int arg = 0;
    
            public WaitNode(Thread thread, int type, int arg) {
                this.type = type;
                this.thread = thread;
                this.arg = arg;
            }
        }
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            int arg = 1;
            if (!tryLock(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode headNote = waiters.peek();
                    if (headNote !=null && headNote.thread == Thread.currentThread()){
                        if (!tryLock(headNote.arg)){
                            LockSupport.park();
                        } else {
                            waiters.poll();
                            return;
                        }
                    }else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            int arg = 1;
            if (tryUnlock(arg)){
                WaitNode head = waiters.peek();
                if (head == null){
                    return;
                }
                LockSupport.unpark(head.thread);
            }
        }
    
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            int arg = 1;
            if (!tryLockShared(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode head = waiters.peek();
                    if (head != null && head.thread == Thread.currentThread()){
                        if (tryLockShared(head.arg)){
                            waiters.poll();
    
                            WaitNode newHead = waiters.peek();
                            if (newHead != null && newHead.type == 1){
                                LockSupport.unpark(newHead.thread);
                            }
                            return;
                        } else {
                            LockSupport.park();
                        }
                    } else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            int arg = 1;
            if (tryUnLockShared(arg)){
                WaitNode head = waiters.peek();
                if (head != null){
                    LockSupport.unpark(head.thread);
                }
                return true;
            }
            return false;
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires
         * @return
         */
        public boolean tryLock(int acquires){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            throw new UnsupportedOperationException();
        }
    }

2.JarryReentrantLock:


    package tech.jarry.learning.netease.locks4;
    
    /**
     * @Description: 仿ReentrantLock,实现其基本功能及特性
     * @Author: jarry
     */
    public class JarryReentrantLock {
    
        private boolean isFair;
    
        // 默认采用非公平锁,保证效率(就是参照源码)
        public JarryReentrantLock() {
            this.isFair = false;
        }
    
        public JarryReentrantLock(boolean isFair) {
            this.isFair = isFair;
        }
    
        private CommonMask commonMask = new CommonMask(){
    
            @Override
            public boolean tryLock(int acquires){
                if (isFair){
                    return tryFairLock(acquires);
                } else {
                    return tryNonFairLock(acquires);
                }
            }
    
            private boolean tryFairLock(int acquires){
                // 这里简单注释一下,如何实现公平锁,其关键在于新的线程到来时,不再直接尝试获取锁,而是直接塞入队列(队列为空,也是殊途同归的)
                // 1.判断读锁(共享锁)是否被占用
                if (readCount.get() == 0){
                    // 2.判断写锁(独占锁)是否被占用
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        // 2.1 (核心区别)如果写锁未被占用,需要先对等待队列waiters进行判断
                        WaitNode head = waiters.peek();
                        if (head !=null && head.thread == Thread.currentThread()){
                            if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                                owner.set(Thread.currentThread());
                                return true;
                            }   // 竞争失败就直接返回false了
                        }
                    } else {
                        // 2.2 如果写锁已经被占用了,就判断是否为当前线程持有,是否进行重入操作
                        if (owner.get() == Thread.currentThread()){
                            // 如果持有独占锁的线程就是当前线程,那么不需要改变owner,也不需要CAS,只需要修改writeCount的值即可
                            writeCount.set(writeCountValue + acquires);
                            return true;
                        }
                    }
                }
                // 以上操作失败,就返回false,表示竞争锁失败
                return false;
            }
    
            private boolean tryNonFairLock(int acquires){
                if (readCount.get() == 0){
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                            owner.set(Thread.currentThread());
                            return true;
                        }
                    } else {
                        if (Thread.currentThread() == owner.get()){
                            writeCount.set(writeCountValue+acquires);
                            return true;
                        }
                    }
                }
                return false;
            }
    
            @Override
            public boolean tryUnlock(int releases) {
                if (owner.get() != Thread.currentThread()){
                    throw new IllegalMonitorStateException();
                }
                int writeCountValue = writeCount.get();
                writeCount.set(writeCountValue-releases);
                if (writeCount.get() == 0){
                    owner.compareAndSet(Thread.currentThread(),null);
                    return true;
                } else {
                    return false;
                }
            }
    
            // 其它诸如共享锁的相关操作,就不进行了。如果强行调用,只会发生UnsupportedOperationException
        };
    
        public void lock() {
            commonMask.lock();
        }
    
        public void unlock() {
            commonMask.unlock();
        }
    
        public boolean tryLock(int acquire) {
            return commonMask.tryLock(acquire);
        }
    
        private boolean tryUnlock(int release) {
            return commonMask.tryUnlock(release);
        }
    }

3.JarryReadWriteLock:


    package tech.jarry.learning.netease.locks4;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class JarryReadWriteLock {
    
        private CommonMask commonMask = new CommonMask(){
    
            @Override
            public boolean tryLock(int acquires){
                if (readCount.get() == 0){
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                            owner.set(Thread.currentThread());
                            return true;
                        }
                    } else {
                        if (Thread.currentThread() == owner.get()){
                            writeCount.set(writeCountValue+acquires);
                            return true;
                        }
                    }
                }
                return false;
            }
    
            @Override
            public boolean tryUnlock(int releases) {
                if (owner.get() != Thread.currentThread()){
                    throw new IllegalMonitorStateException();
                }
                int writeCountValue = writeCount.get();
                writeCount.set(writeCountValue-releases);
                if (writeCount.get() == 0){
                    owner.compareAndSet(Thread.currentThread(),null);
                    return true;
                } else {
                    return false;
                }
            }
    
            @Override
            public boolean tryLockShared(int acquires) {
                while (true){
                    if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){
                        int readCountValue = readCount.get();
                        if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){
                            return true;
                        }
                    }
                    return false;
                }
            }
    
            @Override
            public boolean tryUnLockShared(int releases) {
                while (true){
                    int readCountValue = readCount.get();
                    int readCountNext = readCountValue - releases;
                    if (readCount.compareAndSet(readCountValue,readCountNext)){
                        return readCountNext == 0;
                    }
                }
            }
        };
    
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            commonMask.lock();
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            commonMask.unlock();
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?)
         * @return
         */
        public boolean tryLock(int acquires){
            return commonMask.tryLock(acquires);
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            return commonMask.tryUnlock(releases);
        }
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            commonMask.lockShared();
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            return commonMask.unLockShared();
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            return tryLockShared(acquires);
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            return commonMask.tryUnLockShared(releases);
        }
    
    }

这样看来,顺眼不少。但是,还是存在两点问题。一方面,两个Lock并没有如实际源码那样,实现Lock接口与ReadWriteLock接口。另一方面,JarryReadWriteLock并没有如实际源码那样,通过获取对应Lock(如ReadLock与WriteLock),再进行对应锁操作(其实,就是实现ReadWriteLock接口)。

那么就来进行改造吧。这里直接采用James大佬的最终版CommonMask-JameAQS了。 这里采用自己的AQS,因为自己的AQS有一些关键注解。

四,简易JUC(版本四):

1.JarryAQS:


    package tech.jarry.learning.netease.locks6;
    
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class JarryAQS {
    
        volatile AtomicInteger readCount = new AtomicInteger(0);
        AtomicInteger writeCount = new AtomicInteger(0);
        AtomicReference<Thread> owner = new AtomicReference<>();
        public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>();
    
        class WaitNode{
            Thread thread = null;
            // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁)
            int type = 0;
            int arg = 0;
    
            public WaitNode(Thread thread, int type, int arg) {
                this.type = type;
                this.thread = thread;
                this.arg = arg;
            }
        }
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            int arg = 1;
            if (!tryLock(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode headNote = waiters.peek();
                    if (headNote !=null && headNote.thread == Thread.currentThread()){
                        if (!tryLock(headNote.arg)){
                            LockSupport.park();
                        } else {
                            waiters.poll();
                            return;
                        }
                    }else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            int arg = 1;
            if (tryUnlock(arg)){
                WaitNode head = waiters.peek();
                if (head == null){
                    return;
                }
                LockSupport.unpark(head.thread);
            }
        }
    
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            int arg = 1;
            if (!tryLockShared(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode head = waiters.peek();
                    if (head != null && head.thread == Thread.currentThread()){
                        if (tryLockShared(head.arg)){
                            waiters.poll();
    
                            WaitNode newHead = waiters.peek();
                            if (newHead != null && newHead.type == 1){
                                LockSupport.unpark(newHead.thread);
                            }
                            return;
                        } else {
                            LockSupport.park();
                        }
                    } else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            int arg = 1;
            if (tryUnLockShared(arg)){
                WaitNode head = waiters.peek();
                if (head != null){
                    LockSupport.unpark(head.thread);
                }
                return true;
            }
            return false;
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires
         * @return
         */
        public boolean tryLock(int acquires){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            throw new UnsupportedOperationException();
        }
    }

2.JarryReentrantLock:

    
    package tech.jarry.learning.netease.locks6;
    
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    
    /**
     * @Description: 仿ReentrantLock,实现其基本功能及特性
     * @Author: jarry
     */
    public class JarryReentrantLock implements Lock {
    
        private boolean isFair;
    
        // 默认采用非公平锁,保证效率(就是参照源码)
        public JarryReentrantLock() {
            this.isFair = false;
        }
    
        public JarryReentrantLock(boolean isFair) {
            this.isFair = isFair;
        }
    
        private JarryAQS jarryAQS = new JarryAQS(){
    
            @Override
            // 源码中,则是将FairSync与NonFairSync作为两个单独内布类(extend Sync),来实现的。那样会更加优雅,耦合度更低,扩展性更好(而且实际源码,需要重写的部分也会更多,而不像这个自定义demo,只有一个tryLock方法需要重写)
            public boolean tryLock(int acquires){
                if (isFair){
                    return tryFairLock(acquires);
                } else {
                    return tryNonFairLock(acquires);
                }
            }
    
            private boolean tryFairLock(int acquires){
                // 这里简单注释一下,如何实现公平锁,其关键在于新的线程到来时,不再直接尝试获取锁,而是直接塞入队列(队列为空,也是殊途同归的)
                // 1.判断读锁(共享锁)是否被占用
                if (readCount.get() == 0){
                    // 2.判断写锁(独占锁)是否被占用
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        // 2.1 (核心区别)如果写锁未被占用,需要先对等待队列waiters进行判断
                        WaitNode head = waiters.peek();
                        if (head !=null && head.thread == Thread.currentThread()){
                            if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                                owner.set(Thread.currentThread());
                                return true;
                            }   // 竞争失败就直接返回false了
                        }
                    } else {
                        // 2.2 如果写锁已经被占用了,就判断是否为当前线程持有,是否进行重入操作
                        if (owner.get() == Thread.currentThread()){
                            // 如果持有独占锁的线程就是当前线程,那么不需要改变owner,也不需要CAS,只需要修改writeCount的值即可
                            writeCount.set(writeCountValue + acquires);
                            return true;
                        }
                    }
                }
                // 以上操作失败,就返回false,表示竞争锁失败
                return false;
            }
    
            private boolean tryNonFairLock(int acquires){
                if (readCount.get() == 0){
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                            owner.set(Thread.currentThread());
                            return true;
                        }
                    } else {
                        if (Thread.currentThread() == owner.get()){
                            writeCount.set(writeCountValue+acquires);
                            return true;
                        }
                    }
                }
                return false;
            }
    
            @Override
            /**
             *
             先通过临时变量c,判断是否接下来的操作会完全解锁。
             如果完全解锁,先释放owner,再通过setState将count(源码中为state)修改为0。
             这样调换了一下顺序,但是避免了owner的原子性问题(毕竟别的线程是通过state来判断是否可以竞争锁,修改owner的)。
             */
            public boolean tryUnlock(int releases) {
                if (owner.get() != Thread.currentThread()){
                    throw new IllegalMonitorStateException();
                }
                int writeCountNextValue = writeCount.get() - releases;
                boolean result = false;
                if (writeCountNextValue == 0){
                    result = true;
                    owner.set(null);
                }
                writeCount.set(writeCountNextValue);
                return result;
            }
    
            // 其它诸如共享锁的相关操作,就不进行了。如果强行调用,只会发生UnsupportedOperationException
        };
    
        @Override
        public void lock() {
            jarryAQS.lock();
        }
    
        @Override
        public void lockInterruptibly() throws InterruptedException {
    
        }
    
        @Override
        public boolean tryLock() {
            return jarryAQS.tryLock(1);
        }
    
        @Override
        public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
            return false;
        }
    
        @Override
        public void unlock() {
            jarryAQS.unlock();
        }
    
        @Override
        public Condition newCondition() {
            return null;
        }
    
    }

3.JarryReadWriteLock:

    
    package tech.jarry.learning.netease.locks6;
    
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReadWriteLock;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class JarryReadWriteLock implements ReadWriteLock {
    
        private JarryAQS jarryAQS = new JarryAQS(){
    
            @Override
            // 实际源码,是通过Sync类,继承AQS,再进行Override的。
            public boolean tryLock(int acquires){
                if (readCount.get() == 0){
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                            owner.set(Thread.currentThread());
                            return true;
                        }
                    } else {
                        if (Thread.currentThread() == owner.get()){
                            writeCount.set(writeCountValue+acquires);
                            return true;
                        }
                    }
                }
                return false;
            }
    
            @Override
            public boolean tryUnlock(int releases) {
                if (owner.get() != Thread.currentThread()){
                    throw new IllegalMonitorStateException();
                }
                int writeCountNextValue = writeCount.get() - releases;
                boolean result = false;
                if (writeCountNextValue == 0){
                    result = true;
                    owner.set(null);
                }
                writeCount.set(writeCountNextValue);
                return result;
            }
    
            @Override
            public boolean tryLockShared(int acquires) {
                while (true){
                    if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){
                        int readCountValue = readCount.get();
                        if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){
                            return true;
                        }
                    }
                    return false;
                }
            }
    
            @Override
            public boolean tryUnLockShared(int releases) {
                while (true){
                    int readCountValue = readCount.get();
                    int readCountNext = readCountValue - releases;
                    if (readCount.compareAndSet(readCountValue,readCountNext)){
                        return readCountNext == 0;
                    }
                }
            }
        };
    
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            jarryAQS.lock();
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            jarryAQS.unlock();
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?)
         * @return
         */
        public boolean tryLock(int acquires){
            return jarryAQS.tryLock(acquires);
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            return jarryAQS.tryUnlock(releases);
        }
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            jarryAQS.lockShared();
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            return jarryAQS.unLockShared();
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            return tryLockShared(acquires);
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            return jarryAQS.tryUnLockShared(releases);
        }
    
        @Override
        public Lock readLock() {
            return new Lock() {
                @Override
                public void lock() {
                    jarryAQS.lockShared();
                }
    
                @Override
                public void lockInterruptibly() throws InterruptedException {
    
                }
    
                @Override
                public boolean tryLock() {
                    return jarryAQS.tryLockShared(1);
                }
    
                @Override
                public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
                    return false;
                }
    
                @Override
                public void unlock() {
                    jarryAQS.unLockShared();
                }
    
                @Override
                public Condition newCondition() {
                    return null;
                }
            };
        }
    
        @Override
        public Lock writeLock() {
            return new Lock() {
                @Override
                public void lock() {
                    jarryAQS.lock();
                }
    
                @Override
                public void lockInterruptibly() throws InterruptedException {
    
                }
    
                @Override
                public boolean tryLock() {
                    return jarryAQS.tryLock(1);
                }
    
                @Override
                public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
                    return false;
                }
    
                @Override
                public void unlock() {
                    jarryAQS.unlock();
                }
    
                @Override
                public Condition newCondition() {
                    return null;
                }
            };
        }
    }

到了这里,其实JUC的核心-AQS,已经揭露出来了。通过这个,就可以把握住AQS核心运行机制。而实际的AQS,无非就是修改了存储线程的WaitNodes,采用了Node形成链表。并通过head与tail的应用,来提高效率。当然还有lockInterruptibly等没有提及,也有Condition这样的大头没有说。这部分就留待以后有机会,再深入吧。

另外,再给出这方面的提升道路。如果希望更加深入理解AQS源码,可以一边阅读源码(思考源码实现与自己实现的区别),一边扩展自定义简易AQS。

如,我了解到AQS是通过一个state来同时实现独占锁与共享锁的持有数量。那么我就在JarryAQS中,去尝试实现,从而进一步理解它。

五,简易JUC(版本X-扩展state):

1.JarryAQS:


    package tech.jarry.learning.netease.locks7;
    
    import sun.misc.Unsafe;
    
    import java.lang.reflect.Field;
    import java.util.concurrent.LinkedBlockingQueue;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class JarryAQS {
    
        static final int SHARED_SHIFT   = 16;
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    
        /** Returns the number of shared holds represented in count  */
        static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
        /** Returns the number of exclusive holds represented in count  */
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
    
        /**
         * The synchronization state.
         */
        public volatile int state;
        private static Unsafe unsafe;
        private static long stateOffset;
        static{
            try {
                Field field = Unsafe.class.getDeclaredField("theUnsafe");
                field.setAccessible(true);
                unsafe = (Unsafe) field.get(null);
    
                Field fieldi = JarryAQS.class.getDeclaredField("state");
                stateOffset = unsafe.objectFieldOffset(fieldi);
    
            } catch (NoSuchFieldException | IllegalAccessException e) {
                e.printStackTrace();
            }
        }
        protected final boolean compareAndSetState(int expect, int update) {
            // See below for intrinsics setup to support this
            return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
        }
    
    
        
        volatile AtomicInteger readCount = new AtomicInteger(0);
        AtomicInteger writeCount = new AtomicInteger(0);
    
        AtomicReference<Thread> owner = new AtomicReference<>();
        public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>();
    
        class WaitNode{
            Thread thread = null;
            // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁)
            int type = 0;
            int arg = 0;
    
            public WaitNode(Thread thread, int type, int arg) {
                this.type = type;
                this.thread = thread;
                this.arg = arg;
            }
        }
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            int arg = 1;
            if (!tryLock(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode headNote = waiters.peek();
                    if (headNote !=null && headNote.thread == Thread.currentThread()){
                        if (!tryLock(headNote.arg)){
                            LockSupport.park();
                        } else {
                            waiters.poll();
                            return;
                        }
                    }else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            int arg = 1;
            if (tryUnlock(arg)){
                WaitNode head = waiters.peek();
                if (head == null){
                    return;
                }
                LockSupport.unpark(head.thread);
            }
        }
    
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            int arg = 1;
            if (!tryLockShared(arg)){
                WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg);
                waiters.offer(waitNode);
    
                while (true){
                    WaitNode head = waiters.peek();
                    if (head != null && head.thread == Thread.currentThread()){
                        if (tryLockShared(head.arg)){
                            waiters.poll();
    
                            WaitNode newHead = waiters.peek();
                            if (newHead != null && newHead.type == 1){
                                LockSupport.unpark(newHead.thread);
                            }
                            return;
                        } else {
                            LockSupport.park();
                        }
                    } else {
                        LockSupport.park();
                    }
                }
            }
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            int arg = 1;
            if (tryUnLockShared(arg)){
                WaitNode head = waiters.peek();
                if (head != null){
                    LockSupport.unpark(head.thread);
                }
                return true;
            }
            return false;
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires
         * @return
         */
        public boolean tryLock(int acquires){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            throw new UnsupportedOperationException();
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            throw new UnsupportedOperationException();
        }
    }

2.JarryReentrantLock:


    package tech.jarry.learning.netease.locks7;
    
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    
    /**
     * @Description: 仿ReentrantLock,实现其基本功能及特性
     * @Author: jarry
     */
    public class JarryReentrantLock implements Lock {
    
        private boolean isFair;
    
        // 默认采用非公平锁,保证效率(就是参照源码)
        public JarryReentrantLock() {
            this.isFair = false;
        }
    
        public JarryReentrantLock(boolean isFair) {
            this.isFair = isFair;
        }
    
        // 实际源码,是通过Sync类,继承AQS,再进行Override的。
        private JarryAQS jarryAQS = new JarryAQS(){
    
            @Override
            // 源码中,则是将FairSync与NonFairSync作为两个单独内布类(extend Sync),来实现的。那样会更加优雅,耦合度更低,扩展性更好(而且实际源码,需要重写的部分也会更多,而不像这个自定义demo,只有一个tryLock方法需要重写)
            public boolean tryLock(int acquires){
                if (isFair){
                    return tryFairLock(acquires);
                } else {
                    return tryNonFairLock(acquires);
                }
            }
    
            private boolean tryFairLock(int acquires){
                // 这里简单注释一下,如何实现公平锁,其关键在于新的线程到来时,不再直接尝试获取锁,而是直接塞入队列(队列为空,也是殊途同归的)
                // 1.判断读锁(共享锁)是否被占用
                if (readCount.get() == 0){
                    // 2.判断写锁(独占锁)是否被占用
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        // 2.1 (核心区别)如果写锁未被占用,需要先对等待队列waiters进行判断
                        WaitNode head = waiters.peek();
                        if (head !=null && head.thread == Thread.currentThread()){
                            if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                                owner.set(Thread.currentThread());
                                return true;
                            }   // 竞争失败就直接返回false了
                        }
                    } else {
                        // 2.2 如果写锁已经被占用了,就判断是否为当前线程持有,是否进行重入操作
                        if (owner.get() == Thread.currentThread()){
                            // 如果持有独占锁的线程就是当前线程,那么不需要改变owner,也不需要CAS,只需要修改writeCount的值即可
                            writeCount.set(writeCountValue + acquires);
                            return true;
                        }
                    }
                }
                // 以上操作失败,就返回false,表示竞争锁失败
                return false;
            }
    
            private boolean tryNonFairLock(int acquires){
                if (readCount.get() == 0){
                    int writeCountValue = writeCount.get();
                    if (writeCountValue == 0){
                        if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){
                            owner.set(Thread.currentThread());
                            return true;
                        }
                    } else {
                        if (Thread.currentThread() == owner.get()){
                            writeCount.set(writeCountValue+acquires);
                            return true;
                        }
                    }
                }
                return false;
            }
    
            @Override
            /**
             *
             先通过临时变量c,判断是否接下来的操作会完全解锁。
             如果完全解锁,先释放owner,再通过setState将count(源码中为state)修改为0。
             这样调换了一下顺序,但是避免了owner的原子性问题(毕竟别的线程是通过state来判断是否可以竞争锁,修改owner的)。
             */
            public boolean tryUnlock(int releases) {
                if (owner.get() != Thread.currentThread()){
                    throw new IllegalMonitorStateException();
                }
                int writeCountNextValue = writeCount.get() - releases;
                boolean result = false;
                if (writeCountNextValue == 0){
                    result = true;
                    owner.set(null);
                }
                writeCount.set(writeCountNextValue);
                return result;
            }
    
            // 其它诸如共享锁的相关操作,就不进行了。如果强行调用,只会发生UnsupportedOperationException
        };
    
        @Override
        public void lock() {
            jarryAQS.lock();
        }
    
        @Override
        public void lockInterruptibly() throws InterruptedException {
    
        }
    
        @Override
        public boolean tryLock() {
            return jarryAQS.tryLock(1);
        }
    
        @Override
        public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
            return false;
        }
    
        @Override
        public void unlock() {
            jarryAQS.unlock();
        }
    
        @Override
        public Condition newCondition() {
            return null;
        }
    
    }

3.JarryReadWriteLock:


    package tech.jarry.learning.netease.locks7;
    
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReadWriteLock;
    
    /**
     * @Description:
     * @Author: jarry
     */
    public class JarryReadWriteLock implements ReadWriteLock {
    
        // 实际源码,是通过Sync类,继承AQS,再进行Override的。
        private JarryAQS jarryAQS = new JarryAQS(){
    
            @Override
            public boolean tryLock(int acquires){
                int stateTemp = state;
                if (sharedCount(stateTemp) == 0){
                    int writeCountValue = exclusiveCount(stateTemp);
                    if (writeCountValue == 0){
                        if (compareAndSetState(stateTemp,stateTemp+acquires)){
                            owner.set(Thread.currentThread());
                            return true;
                        }
                    } else {
                        if (Thread.currentThread() == owner.get()){
                            compareAndSetState(stateTemp,stateTemp+acquires);
                            return true;
                        }
                    }
                }
                return false;
            }
    
            @Override
            public boolean tryUnlock(int releases) {
                int stateTemp = state;
                if (owner.get() != Thread.currentThread()){
                    throw new IllegalMonitorStateException();
                }
                int writeCountNextValue = exclusiveCount(stateTemp) - releases;
                boolean result = false;
                if (writeCountNextValue == 0){
                    result = true;
                    owner.set(null);
                }
                compareAndSetState(stateTemp,stateTemp - releases);
                return result;
            }
    
            @Override
            public boolean tryLockShared(int acquires) {
                while (true){
                    int stateTemp = state;
                    if (exclusiveCount(stateTemp) == 0 || owner.get() == Thread.currentThread()){
                        if (compareAndSetState(stateTemp, stateTemp+SHARED_UNIT*acquires)){
                            return true;
                        }
                    }
                    return false;
                }
            }
    
            @Override
            public boolean tryUnLockShared(int releases) {
                while (true){
                    int stateTemp = state;
                    int readCountValue = sharedCount(stateTemp);
                    int readCountNext = readCountValue - releases;
                    if (compareAndSetState(stateTemp, stateTemp-SHARED_UNIT*readCountNext)){
                        return readCountNext == 0;
                    }
                }
            }
        };
    
    
        /**
         * 获取独占锁(针对独占锁)
         */
        public void lock(){
            jarryAQS.lock();
        }
    
        /**
         * 解锁(针对独占锁)
         */
        public void unlock(){
            jarryAQS.unlock();
        }
    
        /**
         * 尝试获取独占锁(针对独占锁)
         * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?)
         * @return
         */
        public boolean tryLock(int acquires){
            return jarryAQS.tryLock(acquires);
        }
    
        /**
         * 尝试解锁(针对独占锁)
         * @param releases 用于设定解锁次数。一般传入waitNode.arg
         * @return
         */
        public boolean tryUnlock(int releases){
            return jarryAQS.tryUnlock(releases);
        }
    
        /**
         * 获取共享锁(针对共享锁)
         */
        public void lockShared(){
            jarryAQS.lockShared();
        }
    
        /**
         * 解锁(针对共享锁)
         */
        public boolean unLockShared(){
            return jarryAQS.unLockShared();
        }
    
        /**
         * 尝试获取共享锁(针对共享锁)
         * @param acquires
         * @return
         */
        public boolean tryLockShared(int acquires){
            return tryLockShared(acquires);
        }
    
        /**
         * 尝试解锁(针对共享锁)
         * @param releases
         * @return
         */
        public boolean tryUnLockShared(int releases){
            return jarryAQS.tryUnLockShared(releases);
        }
    
        @Override
        public Lock readLock() {
            return new Lock() {
                @Override
                public void lock() {
                    jarryAQS.lockShared();
                }
    
                @Override
                public void lockInterruptibly() throws InterruptedException {
    
                }
    
                @Override
                public boolean tryLock() {
                    return jarryAQS.tryLockShared(1);
                }
    
                @Override
                public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
                    return false;
                }
    
                @Override
                public void unlock() {
                    jarryAQS.unLockShared();
                }
    
                @Override
                public Condition newCondition() {
                    return null;
                }
            };
        }
    
        @Override
        public Lock writeLock() {
            return new Lock() {
                @Override
                public void lock() {
                    jarryAQS.lock();
                }
    
                @Override
                public void lockInterruptibly() throws InterruptedException {
    
                }
    
                @Override
                public boolean tryLock() {
                    return jarryAQS.tryLock(1);
                }
    
                @Override
                public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
                    return false;
                }
    
                @Override
                public void unlock() {
                    jarryAQS.unlock();
                }
    
                @Override
                public Condition newCondition() {
                    return null;
                }
            };
        }
    }

六,总结:

如果是从ReentrantLock实现,一步步走到这里,手动撸到这里,那么你对AQS的认知,就有了非常坚实的基础。如果能够在学习过程中,对照源码学习(一边自己实现,一边了解源码是怎么解决相关问题的),那么你对AQS的理解就很不错了。即使有所欠缺,也只是AQS阅读积累方面了。

J.U.C剖析与解读2(AQS的由来)

原文:https://www.cnblogs.com/Tiancheng-Duan/p/12010076.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!