首页 > 其他 > 详细

HDU 1995汉诺塔V

时间:2014-02-17 11:58:50      阅读:311      评论:0      收藏:0      [点我收藏+]

问题描述:求n阶汉诺塔,上数第k个盘子的移动次数

 

首先:由于比k小的盘子移动不会牵扯k移动,所以问题被简化成n-k+1阶汉诺塔中第一个盘子的移动次数。

再观察汉诺塔的移动策略:

1)将A上n-1个盘子借助C座线移到B座上;

2)把A座上剩下的一个盘移到C座上;

3)将n-1个盘从B座借助于A座移到C座上。

 

步骤2)中该盘子未移动,所以递推公式f[n]=2*f[n-1],

由于问题已经转化成n-k+1阶汉诺塔,故所求通项f[n]=2^(n-k).

bubuko.com,布布扣
#include<stdio.h>
int main()
{
    long long f[61];
    int i;
    for(i=1,f[0]=1;i<61;i++)
    {
        f[i]=f[i-1]<<1;
    }
    int n,x;
    while(scanf("%d%d",&n,&x))
    {
        printf("%d\n",f[n-x]);
    }
    return 0;
}
bubuko.com,布布扣

HDU 1995汉诺塔V

原文:http://www.cnblogs.com/zhen94/p/3551811.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!