思路:
首先二分答案,即:二分最大平均值。
我们将a全部减去mid,问题转化为判断是否存在一个长度在s~t范围内的区间它的和为正,如果有说明还有更大的平均值。
用前缀和和单调队列维护。
然后用单调队列求出sum[i]-min(sum[i-t]~sum[i-s]),然后判断是否大于0即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1e5 + 5;
int n;
int s,t;
int a[MAXN];
double sum[MAXN];
inline int read() {
int k = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-')
f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
k = (k << 1) + (k << 3) + (ch & 15);
ch = getchar();
}
if (f == -1) k = ~k + 1;
return k;
}
int head = 1,tail = 0,q[MAXN];
bool check(double mid){
memset(q,0,sizeof(q));
memset(sum,0,sizeof(sum));
for(int i = 1 ; i <= n ; i++) sum[i] = sum[i - 1] + double(a[i]) - mid;
head = 1,tail = 0;
for(int i = s ; i <= n ; i++){
while(head <= tail && sum[q[tail]] > sum[i - s]) tail--;
q[++tail] = i - s;
while(head <= tail && q[head] < i - t) head++;
if(head <= tail && sum[i] - sum[q[head]] >= 0) return true;
}
return false;
}
int main(){
n = read(),s = read(),t = read();
for (int i = 1 ; i <= n ; i++) a[i] = read();
double l = -10000.0,r = 10000.0;
while(r - l > 1e-4){
double mid = (l + r) / 2.0;
if (check(mid) == true) l = mid;
else r = mid;
}
printf("%.3lf",l);
return 0;
}
原文:https://www.cnblogs.com/LSJ-juruo/p/12035074.html