首页 > 其他 > 详细

【JZOJ 3909】Idiot 的乘幂

时间:2019-12-13 18:59:54      阅读:107      评论:0      收藏:0      [点我收藏+]

题面:

技术分享图片
技术分享图片

正文:

把题目中的方程组组合在一起就变成了:

\(X^{a+c}\equiv b \cdot d (\mod p)\)

那这时,我们假定两个数\(x\)\(y\),使得:

\(ax + cy = 1\)

于是:

\(X^{ax+cy}\equiv X \equiv b^x \cdot d^y (\mod p)\)

那我们就可以根据\(ax+cy=1\)跑一遍扩欧,再根据\(X \equiv b^x \cdot d^y (\mod p)\),就能得出\(X\)了。


但是,你以为出题人这么善良吗?

\(x\)\(y\)可能是负数,做\(b^x \cdot d^y\) 时就相当于 \(\frac{1}{b^{(-x)}} \cdot \frac{1}{d^{(-y)}}\), 因为有膜法技能同余,这里肯定出锅。

所以我们还要给\(b\)\(d\)求个逆元,同样,也是用扩欧。

【JZOJ 3909】Idiot 的乘幂

原文:https://www.cnblogs.com/GJY-JURUO/p/12030555.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!