首页 > 其他 > 详细

2. Unconstrained Optimization

时间:2019-12-18 10:36:17      阅读:60      评论:0      收藏:0      [点我收藏+]

<font face=‘Comic Sans MS‘, size=5> ms MS

2.1 Basic Results on the Existence of Optimizers

2.1.

Let \(f:U->\mathbb{R}\) be a function on a set \(U\subseteq \mathbb{R}^n\). Let \(x^*\in U\) be an arbitrary point, and let \(B_r(x^*):=\{x\in U:|| x-x^*||<r\}\) be the open ball of radius \(r\) around \(x^*\). The point \(x^*\) is called
-(a) a local minimizer of \(f\) if
\[ f(x^*)\leq f(x) \]
let f


2. Unconstrained Optimization

原文:https://www.cnblogs.com/shencangzaiyunduan/p/12058223.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!