接上篇 参加杭州 2019 AI Bootcamp有感与总结(1) - repeatedly - 博客园
先感谢主办方提供的午餐,中午午休的时候,大家聊了很多,或者说主要是听大佬谈。聊了杭州的.Net生态和作为技术人的如何自我要求。我试着总结一下。
ML.NET是面向.NET开发人员的跨平台机器学习框架,而Model Builder是Visual Studio中的UI工具,它使用自动机器学习(AutoML)轻松地允许您训练和使用自定义ML.NET模型。借助ML.NET和Model Builder,您可以在没有任何机器学习经验的情况下为情绪分析,价格预测等场景创建自定义机器学习模型!
摘自:ML.NET Model Builder 更新 - Bean.Hsiang - 博客园
给了两个例子
一个是情绪分析,判断一个文本内容是否有负面情绪:负面情绪为 0,正面情绪为 1。
一个是猫VS狗训练,识别图片中的物体与猫狗有多少相似度。
关于ML.NET Model Builder的更多内容,请参考 什么是模型生成器,它的工作原理是怎样的? - ML.NET | Microsoft Docs
AutoML中文意思是自动化机器学习,即借助AutoML训练模型可以自动化将机器学习用于数据训练。
AutoML训练模型将会支持越来越多的机器学习任务,已经支持的包括但不限于二元分类、多类分类和回归等等。甚至你可以自己实现机器学习算法,用以拓展AutoML。
参考:
先笼统的罗列了一下大略,后续将更细化的把更多的收获整理出来。敬请期待和支持。
原文:https://www.cnblogs.com/AlienXu/p/HangZhou_2019_AI_Bootcamp_2.html