首页 > 其他 > 详细

pandas IO

时间:2019-12-22 19:58:52      阅读:90      评论:0      收藏:0      [点我收藏+]
pd.read_csv("../data/user_info.csv", index_col="name") #假设csv里包含这几列: name, age, birth, sex
data="name,age,birth,sex\nTom,18.0,2000-02-10,\nBob,30.0,1988-10-17,male"
print(data)
pd.read_csv(StringIO(data))#从 StringIO 对象中读取。
data = "name|age|birth|sex~Tom|18.0|2000-02-10|~Bob|30.0|1988-10-17|male"
pd.read_csv(StringIO(data), sep="|", lineterminator="~")  #自定义字段之间的分隔符
pd.read_csv(StringIO(data), sep="|", lineterminator="~", dtype={"age": int}) # 自己指定数据类型
data="Tom,18.0,2000-02-10,\nBob,30.0,1988-10-17,male"
pd.read_csv(StringIO(data), names=["name", "age", "birth", "sex"])  csv文件并没有标题,我们可以设置参数 names 来添加标题。
pd.read_csv(StringIO(data), usecols=["name", "age"]) # 只读取部分列
print(user_info.to_json()) #将dataframe转成json字符串

 

格式类型数据描述ReaderWriter
text CSV read_csv to_csv
text JSON read_json to_json
text HTML read_html to_html
text clipboard read_clipboard to_clipboard
binary Excel read_excel to_excel
binary HDF5 read_hdf to_hdf
binary Feather read_feather to_feather
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas  
binary Python Pickle read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google Big Query read_gbq to_gbq

 

 

 to_json
split 字典像索引 - > [索引],列 - > [列],数据 - > [值]}
records 列表像{[列 - >值},…,{列 - >值}]
index 字典像{索引 - > {列 - >值}}
columns 字典像{列 - > {索引 - >值}}
values 只是值数组

技术分享图片

 

 技术分享图片

 

pandas IO

原文:https://www.cnblogs.com/testzcy/p/12080546.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!