bulkloop例程是USB固件开发中的基础例程,通过它我们可以学到很多基础知识,我在这里也利用下午的时间来学习一下bulkloop例程。
bulkloop这个名字就说明了该固件的作用:以bulk型endpoint作为输出和输入端口,让数据"转一圈"。就是在主机端输出一组数据到FX2LP的某一个bulk型endpoint(比如EP2)的缓存中,然后固件将EP2缓存中的数据转移到另一个bulk型endpoint(比如EP6)的缓存中去,当主机端从EP6输入数据的时候,就会发现得到的数据正是之前输出到EP2的数据。
图1 固件工程Keil界面 :
bulkloop工程本身用到的源文件有:fw.c、bulkloop.c、dscr.a51、EZUSB.LIB、USBjmpTb.OBJ。
fw.c:固件框架程序FrameWork,它包含了固件程序的主程序。框架程序使FX2LP固件有一个相对固定的运行模式,这使得开发者能够更清楚在什么地方、什么时候应该干什么。
下面是fw.c文件中的代码和我的注释:
明天去实验室再上传
下面是bulkloop.c文件中的代码和我的注释:
//----------------------------------------------------------------------------- // File: bulkloop.c // Contents: Hooks required to implement USB peripheral function. // // $Archive: /USB/Examples/FX2LP/bulkloop/bulkloop.c $ // // //----------------------------------------------------------------------------- // Copyright (c) 2011, Cypress Semiconductor Corporation All rights reserved //----------------------------------------------------------------------------- #pragma NOIV // Do not generate interrupt vectors //F:告诉编译器,不要使用默认的中断向量表 #include "..\inc\fx2.h" #include "..\inc\fx2regs.h" #include "..\inc\syncdly.h" // SYNCDELAY macro extern BOOL GotSUD; // Received setup data flag extern BOOL Sleep; extern BOOL Rwuen; extern BOOL Selfpwr; BYTE Configuration; // Current configuration BYTE AlternateSetting; // Alternate settings #define VR_NAKALL_ON 0xD0 //F: 1101 0000 #define VR_NAKALL_OFF 0xD1 //F: 1101 0001 //----------------------------------------------------------------------------- // Task Dispatcher hooks //F:任务分配挂钩 // The following hooks are called by the task dispatcher. //F:挂钩函数是被任务分配器调用的 //----------------------------------------------------------------------------- void TD_Init(void) // Called once at startup { // set the CPU clock to 48MHz CPUCS = ((CPUCS & ~bmCLKSPD) | bmCLKSPD1) ; //F:CLKSPD1=1且CLKSPD0=0 意思是48MHz // set the slave FIFO interface to 48MHz //F:时钟来源定为外部,内部FIFO\GPIF时钟设为48MHz,IFCLK输出端口为三态,IFCLK极性不翻转,同步方式,PE012为端口,ABD端口为端口模式 IFCONFIG |= 0x40; //F: 下面的寄存器的修改之间需要添加同步延时 // Registers which require a synchronization delay, see section 15.14 // FIFORESET FIFOPINPOLAR // INPKTEND OUTPKTEND // EPxBCH:L REVCTL // GPIFTCB3 GPIFTCB2 // GPIFTCB1 GPIFTCB0 // EPxFIFOPFH:L EPxAUTOINLENH:L // EPxFIFOCFG EPxGPIFFLGSEL // PINFLAGSxx EPxFIFOIRQ // EPxFIFOIE GPIFIRQ // GPIFIE GPIFADRH:L // UDMACRCH:L EPxGPIFTRIG // GPIFTRIG // Note: The pre-REVE EPxGPIFTCH/L register are affected, as well... // ...these have been replaced by GPIFTC[B3:B0] registers // default: all endpoints have their VALID bit set // default: TYPE1 = 1 and TYPE0 = 0 --> BULK // default: EP2 and EP4 DIR bits are 0 (OUT direction) // default: EP6 and EP8 DIR bits are 1 (IN direction) // default: EP2, EP4, EP6, and EP8 are double buffered // we are just using the default values, yes this is not necessary... EP1OUTCFG = 0xA0; EP1INCFG = 0xA0; SYNCDELAY; // see TRM section 15.14 EP2CFG = 0xA2; //F:1010 0010意思是:有效,OUT,Bulk,512,0,Double. SYNCDELAY; EP4CFG = 0xA0; //F:1010 0000意思是:有效,OUT,Bulk,512,0,00(4和8端点的末尾两位只能是0,在2和6都是Double情况下,意味着Double). SYNCDELAY; EP6CFG = 0xE2; //F:1110 0010意思是:有效,IN,Bulk,512,0,Double. SYNCDELAY; EP8CFG = 0xE0; //F:1110 0000意思是:有效,OUT,Bulk,512,0,00. // out endpoints do not come up armed //F:输出端点一开始没有被arm. // since the defaults are double buffered we must write dummy byte counts twice //F:因为端点默认是双倍缓冲(512*2),我们必须用无用数据写两次字节计数,用来arm输出端点. SYNCDELAY; EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip. SYNCDELAY; EP2BCL = 0x80; SYNCDELAY; EP4BCL = 0x80; // arm EP4OUT by writing byte count w/skip. SYNCDELAY; EP4BCL = 0x80; // enable dual autopointer feature //F:使能自动指针 AUTOPTRSETUP |= 0x01; } void TD_Poll(void) // Called repeatedly while the device is idle //F:重复调用 { WORD i; WORD count; if(!(EP2468STAT & bmEP2EMPTY)) //F:如果EP2的buff不空.EP2468STAT中的各个位其实就是EPxCS中的F和E位,标识满\空. { // check EP2 EMPTY(busy) bit in EP2468STAT (SFR), core set‘s this bit when FIFO is empty if(!(EP2468STAT & bmEP6FULL)) //F:如果EP6的buff不满. { // check EP6 FULL(busy) bit in EP2468STAT (SFR), core set‘s this bit when FIFO is full APTR1H = MSB( &EP2FIFOBUF ); //F:自动指针1指向EP2的buffer APTR1L = LSB( &EP2FIFOBUF ); AUTOPTRH2 = MSB( &EP6FIFOBUF ); //F:自动指针2指向EP6的buffer AUTOPTRL2 = LSB( &EP6FIFOBUF ); count = (EP2BCH << 8) + EP2BCL; //F:计算EP2有多少字节 // loop EP2OUT buffer data to EP6IN for( i = 0x0000; i < count; i++ ) { // setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s) // F:利用自动指针进行EP2和EP6之间的数据转移 EXTAUTODAT2 = EXTAUTODAT1; // F:自动指针1指向的数据到自动指针2指向的空间 } EP6BCH = EP2BCH; //F:宝贝数据长度到EP6的计数,准备接下来的IN操作 SYNCDELAY; EP6BCL = EP2BCL; // arm EP6IN SYNCDELAY; EP2BCL = 0x80; // re(arm) EP2OUT } } if(!(EP2468STAT & bmEP4EMPTY)) { // check EP4 EMPTY(busy) bit in EP2468STAT (SFR), core set‘s this bit when FIFO is empty if(!(EP2468STAT & bmEP8FULL)) { // check EP8 FULL(busy) bit in EP2468STAT (SFR), core set‘s this bit when FIFO is full APTR1H = MSB( &EP4FIFOBUF ); APTR1L = LSB( &EP4FIFOBUF ); AUTOPTRH2 = MSB( &EP8FIFOBUF ); AUTOPTRL2 = LSB( &EP8FIFOBUF ); count = (EP4BCH << 8) + EP4BCL; // loop EP4OUT buffer data to EP8IN for( i = 0x0000; i < count; i++ ) { // setup to transfer EP4OUT buffer to EP8IN buffer using AUTOPOINTER(s) EXTAUTODAT2 = EXTAUTODAT1; } EP8BCH = EP4BCH; SYNCDELAY; EP8BCL = EP4BCL; // arm EP8IN SYNCDELAY; EP4BCL = 0x80; // re(arm) EP4OUT } } } BOOL TD_Suspend(void) // Called before the device goes into suspend mode 可自定义 { return(TRUE); } BOOL TD_Resume(void) // Called after the device resumes 可自定义 { return(TRUE); } //----------------------------------------------------------------------------- // Device Request hooks 设备请求执行函数,大多数可自定义 // The following hooks are called by the end point 0 device request parser. //----------------------------------------------------------------------------- BOOL DR_GetDescriptor(void) { return(TRUE); } BOOL DR_SetConfiguration(void) // Called when a Set Configuration command is received { Configuration = SETUPDAT[2]; //F:Configuration这个变量是哪里定义的?还是编译器内部定义的?如何与描述符表联系在一起??? return(TRUE); // Handled by user code } BOOL DR_GetConfiguration(void) // Called when a Get Configuration command is received { EP0BUF[0] = Configuration; EP0BCH = 0; EP0BCL = 1; //F: arm EP0 return(TRUE); // Handled by user code } BOOL DR_SetInterface(void) // Called when a Set Interface command is received { AlternateSetting = SETUPDAT[2]; return(TRUE); // Handled by user code } BOOL DR_GetInterface(void) // Called when a Set Interface command is received { EP0BUF[0] = AlternateSetting; EP0BCH = 0; EP0BCL = 1; return(TRUE); // Handled by user code } BOOL DR_GetStatus(void) { return(TRUE); } BOOL DR_ClearFeature(void) { return(TRUE); } BOOL DR_SetFeature(void) { return(TRUE); } BOOL DR_VendorCmnd(void) //F:生产商请求 { BYTE tmp; switch (SETUPDAT[1]) { case VR_NAKALL_ON: //F:NAK所有transfer请求 tmp =FIFORESET; //F:为什么不直接 FIFORESET|=bmNAKALL ??? tmp |= bmNAKALL; SYNCDELAY; FIFORESET = tmp; //F:这样费周折是因为FIFORESET不可以按位访问吗??? break; case VR_NAKALL_OFF: tmp = FIFORESET; tmp &= ~bmNAKALL; SYNCDELAY; FIFORESET = tmp; break; default: return(TRUE); } return(FALSE); } //----------------------------------------------------------------------------- // USB Interrupt Handlers // The following functions are called by the USB interrupt jump table. //----------------------------------------------------------------------------- // Setup Data Available Interrupt Handler void ISR_Sudav(void) interrupt 0 //F:有控制传输的8字节数据到达 { GotSUD = TRUE; // Set flag EZUSB_IRQ_CLEAR(); //F:重置中断请求,write 0 to EXIF.5 USBIRQ = bmSUDAV; // Clear SUDAV IRQ //F:向指定的位写1以清楚终端请求 } // Setup Token Interrupt Handler void ISR_Sutok(void) interrupt 0 //F:USB内核接收到Setup传输的Token { EZUSB_IRQ_CLEAR(); USBIRQ = bmSUTOK; // Clear SUTOK IRQ } void ISR_Sof(void) interrupt 0 //F:USB内核收到 Start of Frame packet { EZUSB_IRQ_CLEAR(); USBIRQ = bmSOF; // Clear SOF IRQ } void ISR_Ures(void) interrupt 0 //F:USB Reset Interrupt Request { // whenever we get a USB reset, we should revert to full speed mode //任何时刻接收到USB reset,都应该滚回全速模式 pConfigDscr = pFullSpeedConfigDscr; ((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR; pOtherConfigDscr = pHighSpeedConfigDscr; ((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR; EZUSB_IRQ_CLEAR(); USBIRQ = bmURES; // Clear URES IRQ } void ISR_Susp(void) interrupt 0 { Sleep = TRUE; EZUSB_IRQ_CLEAR(); USBIRQ = bmSUSP; } void ISR_Highspeed(void) interrupt 0 { if (EZUSB_HIGHSPEED()) { pConfigDscr = pHighSpeedConfigDscr; ((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR; pOtherConfigDscr = pFullSpeedConfigDscr; ((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR; } EZUSB_IRQ_CLEAR(); USBIRQ = bmHSGRANT; } void ISR_Ep0ack(void) interrupt 0 { } void ISR_Stub(void) interrupt 0 { } void ISR_Ep0in(void) interrupt 0 { } void ISR_Ep0out(void) interrupt 0 { } void ISR_Ep1in(void) interrupt 0 { } void ISR_Ep1out(void) interrupt 0 { } void ISR_Ep2inout(void) interrupt 0 { } void ISR_Ep4inout(void) interrupt 0 { } void ISR_Ep6inout(void) interrupt 0 { } void ISR_Ep8inout(void) interrupt 0 { } void ISR_Ibn(void) interrupt 0 { } void ISR_Ep0pingnak(void) interrupt 0 { } void ISR_Ep1pingnak(void) interrupt 0 { } void ISR_Ep2pingnak(void) interrupt 0 { } void ISR_Ep4pingnak(void) interrupt 0 { } void ISR_Ep6pingnak(void) interrupt 0 { } void ISR_Ep8pingnak(void) interrupt 0 { } void ISR_Errorlimit(void) interrupt 0 { } void ISR_Ep2piderror(void) interrupt 0 { } void ISR_Ep4piderror(void) interrupt 0 { } void ISR_Ep6piderror(void) interrupt 0 { } void ISR_Ep8piderror(void) interrupt 0 { } void ISR_Ep2pflag(void) interrupt 0 { } void ISR_Ep4pflag(void) interrupt 0 { } void ISR_Ep6pflag(void) interrupt 0 { } void ISR_Ep8pflag(void) interrupt 0 { } void ISR_Ep2eflag(void) interrupt 0 { } void ISR_Ep4eflag(void) interrupt 0 { } void ISR_Ep6eflag(void) interrupt 0 { } void ISR_Ep8eflag(void) interrupt 0 { } void ISR_Ep2fflag(void) interrupt 0 { } void ISR_Ep4fflag(void) interrupt 0 { } void ISR_Ep6fflag(void) interrupt 0 { } void ISR_Ep8fflag(void) interrupt 0 { } void ISR_GpifComplete(void) interrupt 0 { } void ISR_GpifWaveform(void) interrupt 0 { }
原文:http://www.cnblogs.com/sunmaoduo/p/3938500.html