今天写三种常见的差分放大电路:基本形式、长尾式、恒流源式
下图为基本形式差分放大电路
下图左边为差模输入,右边为共模输入,其主要技术指标如下:
下图为长尾式差分放大电路
\(R_e\)作用是引入共模负反馈(即对共模输入有负反馈,对差模无),减小了\(A_c\),,提高了共模抑制比。\(R_e\)越大,则抑制零漂效果越好,负电源\(V_{EE}\)用来补偿\(R_e\)的直流压降。引入\(R_e\)后,由\(V_{EE}\)提供基极电流,所以不接基极电阻\(R_b\)。
设计如下图所示
输入电压为零时,\(\beta_1=\beta_2\),\(r_{be1}=r_{be2}\),\(R_2=R_4\),\(R_1=R_3\),所以静态基极电流、集电极电流、集电极电压、基极与发射极间电压都相等。
基极回路\[I_{BQ1}R_1+U_{BEQ1}+2I_{EQ}R_5=V_{EE}\]
取\(I_{BQ}=40uA\),所以\(R_1+2(1+\beta_1)R_5=\frac{12V-0.7V}{0.04mA}=282.5k\Omega\),取\(R_1=R_3=1k\Omega\),\(R_5=1k\Omega\)。
设置\(R_2=R_4\)和\(R_5\)使静态基极电位对地在\(0V\)附近,取\(I_{CQ}=5.6mA\)、\(U_{CQ}=V_{CC}/2=6V\),则\(R_2=R_4=\frac{12V-6V}{5.6mA}\approx1.1k\Omega\)。
由交流通路得\[\Delta{i_{B1}}=\frac{\Delta{u_{I1}}}{R_1+r_{be1}}\]
则\[\Delta{u_{C1}}=-\beta_1\Delta{i_{B1}}(R_2//\frac{R_6}{2})=-\frac{\beta(R_2//\frac{R_6}{2})}{R_1+r_{be1}}\Delta{u_{I1}}\]
同理可得\(\Delta{u_{C2}}\),则输出电压\[\Delta{u_{o}}=\Delta{u_{C1}}-\Delta{u_{C2}}=-\frac{\beta(R_2//\frac{R_6}{2})}{R_1+r_{be1}}(\Delta{u_{I1}}-\Delta{u_{I2}})\]
则差模电压放大倍数\[A_d=\frac{\Delta{u_{o}}}{\Delta{u_{I1}}-\Delta{u_{I2}}}=-\frac{\beta(R_2//\frac{R_6}{2})}{R_1+r_{be1}}\]
差模输入电阻\[R_{id}=2(R_1+r_{be1})\]
输出电阻为\[R_o=2R_c\]
此电路差模电压放大倍数\(A_d=\frac{584mV}{20mV}\approx=29倍\)
输出电压波形图如下图所示
长尾式\(R_e\)的值受负电源\(V_{EE}\)大小的影响,为了不要求过高的负电源,采用三极管代替长尾电阻。下图为恒流源式式差分放大电路
1. 确定直流电源电压
这里选\(12V\)正电源和\(-12V\)负电源。
2. 确定\(R_2\)和\(R_4\)
静态集电极电流取\(I_{CQ1}=I_{CQ2}=4mA\)。
静态集电极电位取正电源的一半\(U_{CQ1}=U_{CQ2}=V_{CC}/2=6V\),则\(R_2=R_4=6V/4mA=1.5k\Omega\)。
3. 恒流电路的设计
取\(Q_1\)和\(Q_2\)的静态基极电位(对地)为零,则\(U_{CQ}=-0.7V(对地)\)。
取\(R_5\)的压降为2V,因为\(I_{EQ3}=I_{CQ3}=I_{EQ1}+I_{EQ1}=8mA\),则\(R_5=\frac{2V}{8mA}=250\Omega\),取标称值电阻值\(240\Omega\)。
\(R_6\)和\(R_7\)确定方法和之前的共射放大电路一样,取标称电阻值得 \(R_6=5.1k\Omega\)和\(R_7=36k\Omega\)。
4. 确定\(R_1\)和\(R_3\)
\(R_1\)和\(R_3\)的值影响输入电阻,这里取\(R_1=R_3=1k\Omega\)。
\(C_1\)和\(C_2\)取\(10uF\)。
5. Multisim仿真验证
设置好参数进行仿真,如下图
此电路差模电压放大倍数\(A_d=\frac{2.593V}{50mV}\approx52倍\)
输出电压波形如下图所示
忙里偷闲完成一篇
原文:https://www.cnblogs.com/l980401/p/12094036.html