首页 > 其他 > 详细

Faster Rcnn训练自己的数据集过程大白话记录

时间:2019-12-27 13:51:40      阅读:259      评论:0      收藏:0      [点我收藏+]

声明:每人都有自己的理解,动手实践才能对细节更加理解!

一.算法理解

  省略。。。。。。。。。。。。。。。。。。

二.训练及源码理解

  首先配置:

  在./lib/utils文件下....运行python setup.py build_ext --inplace

  。。。。

  (1)数据准备

  1. 数据介绍:检测图片当中的手写体区域,图片不多自己标注了385张,但是图片中的手写体区域大约几千个,之前训练CTPN自己制作的数据集。
  2. 数据格式:分为3个文件夹,首先是JPEGImages(存放的训练图片,命名格式:000000.png,000001.png...等),然后是ImageSets(里面分Layout(包括test.txt,train.txt,trainval.txt,val.txt,存放训练测试验证的文件名称)和Main即可),另外Annotations(存放的是标注数据,xml格式的,之前数据标注在txt里面,自己转为xml标标准格式存储,或者用labelImg-master(Windows)标注,直接生成xml即可),至此数据准备完毕。。。。。。。
  3. 模型准备:默认前段卷积网络VGG16,vgg16需要自己下载,存放在路径.data/imagenet_weights/vgg16.ckpt
  4. 训练:train(),主要流程及核心代码如下
    net.create_architecture(sess, "TRAIN", self.imdb.num_classes, tag=‘default‘)
    rois, cls_prob, bbox_pred = self.build_network(sess, training)  rois为roi pooling层得到的框,cls_prob分类得分,bbox_pred框预测
    net = self.build_head(is_training)  vgg16卷积层提取特征,图片缩小16倍
    rpn_cls_prob, rpn_bbox_pred, rpn_cls_score, rpn_cls_score_reshape = self.build_rpn(net, is_training, initializer)  rpn网络(anchor生成与原图对应坐标),分类得分,候选框偏移等
    rois = self.build_proposals(is_training, rpn_cls_prob, rpn_bbox_pred, rpn_cls_score)  通过超出图片区域,nms等筛选出合适的rois
    cls_score, cls_prob, bbox_pred = self.build_predictions(net, rois, is_training, initializer, initializer_bbox) roi pooling,全连接预测等
  5. 训练自己数据修改的地方,手写体识别就设置了一个类别:chinese,在源码pascal_voc.py中修改self._classes=(‘__background__‘, ‘chinese‘)可以按照自己的类别进行修改,注意图片后缀格式,然后修改各种路径就可以训练了。
  6. 测试:迭代了10000次,用demo代码进行测试,注意修改CLASSES = (‘__background__‘, ‘chinese‘) 。

     

     

Faster Rcnn训练自己的数据集过程大白话记录

原文:https://www.cnblogs.com/lzq116/p/12106552.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!