tensorflow加scalar的函数只能添加variable
tf.summary.scalar(‘name‘,variable)
导致想要添加一个numpy的值,同时随epoch变化就比较困难,直接在epoch里面加会一直改变名字,每个都是一个点
我设了一个placeholder,再把想要的值feed进去(注:sess.run()里面要跑的节点feed_dict只用feed与它有关的就可以了)
t_acc = tf.placeholder(tf.float32,shape=[None,1]) r_acc=tf.reduce_mean(t_acc) merged_summary = tf.summary.merge_all() acc1=acc.reshape(-1,1) feed_dict = {ops[‘pointclouds_pl‘]: cur_batch_data, ops[‘labels_pl‘]: cur_batch_label, ops[‘normals_pl‘]: cur_batch_normals, ops[‘is_training_pl‘]: is_training, ops[‘kernel‘]: kernel_init, ops[‘t_acc‘]: acc1} summary = sess.run(merged_summary, feed_dict=feed_dict) train_writer.add_summary(summary, step)
原文:https://www.cnblogs.com/inshallah/p/12115393.html