首页 > 系统服务 > 详细

(转) 如何在 Ubuntu 16.04 上安装并使用 TensorFlow

时间:2020-01-03 10:46:07      阅读:76      评论:0      收藏:0      [点我收藏+]

原文链接

引言

TensorFlow 是由谷歌构建的用于训练神经网络的开源机器学习软件。TensorFlow 的神经网络以有状态数据流图的形式表示。图中的每个节点表示神经网络在多维数组上执行的操作。这些多维数组通常称为“张量(tensors)”,因此命名为“TensorFlow”。
TensorFlow 是一个深度学习软件系统。根据谷歌机器学习人工智能系统中的排名(RankBrain),TensorFlow 可以很好地用于信息检索。TensorFlow 可以执行图像识别,如谷歌的 Inception,以及人类语言的音频识别。它也有助于解决其他不特定于机器学习的问题,如偏微分方程。
TensorFlow 架构允许部署在桌面、服务器或移动设备中的多个 CPU 或 GPU 上。还有与 CUDA 集成的扩展,CUDA 是 Nvidia 的一个并行计算平台。它可让部署在 GPU 上的用户直接访问虚拟指令集和 GPU 的其他元素,这对于并行计算任务是必需的。
在本教程中,您将安装“只支持 CPU”的 TensorFlow 版本。这对于那些想要安装和使用 TensorFlow 的人来说是非常理想的,不需要依赖 Nvidia 显卡或者不需要运行关键性能的应用程序。
您可以通过以下几种方式安装 TensorFlow。每种方法都有不同的用例和开发环境:

  • Python 和 Virtualenv:在此方法中,您将安装 TensorFlow 并在 Python 虚拟环境中使用 TensorFlow 所需的所有包。这将把您的 TensorFlow 环境与同一台机器上的其他 Python 程序隔离开来。
  • Native pip:在此方法中,您将在系统全局中安装 TensorFlow。这是推荐给多用户系统上使用 TensorFlow 的那些人。这种安装方法不会在包环境中隔离 TensorFlow,并且可能会干扰其他 Python 安装或库。
  • Docker:Docker 是一个容器运行时环境,它将内容完全隔离在系统上预先存在的包中。在这个方法中,您使用包含 TensorFlow 及其所有依赖项的 Docker 容器。这种方法非常适合将 TensorFlow 合并到已经使用 Docker 的更大的应用程序体系结构中。但是这样做的话 Docker 镜像将相当大。

在本教程中,您将在 Python 虚拟环境 virtualenv 中安装 TensorFlow。该方法将 TensorFlow 安装隔离,并快速启动和运行。一旦完成安装,您将通过运行一个简单的 TensorFlow 程序来验证安装是否成功,然后使用 TensorFlow 来执行图像识别。

安装准备在开始本教程之前,您需要准备以下内容:
*
一个至少 1GB 内存的 Ubuntu 16.04 服务器,根据 Ubuntu 16.04 初始化服务器设置指南进行设置,包括 sudo 非 root 用户和防火墙。您需要至少 1GB 内存的系统才能成功地完成本教程的最后一个示例。
*
安装 Python 3.3 或更高版本以及虚拟环境 virtualenv。按照如何在 Ubuntu 16.04 上安装 Python 3 教程以配置 Python 和 virtualenv。
*
安装 Git,您可以通过以下方式来实现,如何在 Ubuntu 16.04 上安装 Git。您将使用它来下载一个示例存储库。

(转) 如何在 Ubuntu 16.04 上安装并使用 TensorFlow

原文:https://www.cnblogs.com/schips/p/12143591.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!