目录
集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器。弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5)。
集成算法的成功在于保证弱分类器的多样性(Diversity)。而且集成不稳定的算法也能够得到一个比较明显的性能提升。
常见的集成学习思想有:Bagging、Boosting、Stacking
Bagging方法又叫做自举汇聚法(Bootstrap Aggregating),思想:在原始数据集上通过有放回的抽样的方式,重新选择出S个新数据集来分别训练S个分类器的集成技术。也就是说这些模型的训练数据中允许存在重复数据。
Bagging方法训练出来的模型在预测新样本分类的时候,会使用多数投票或者求均值的方式来统计最终的分类结果。
Bagging方法的弱学习器可以是基本的算法模型,eg: Linear、Ridge、Lasso、Logistic、Softmax、ID3、C4.5、CART、SVM、KNN等。
备注:Bagging方式是有放回的抽样,并且每个子集的样本数量必须和原始样本数量一致,但是子集中允许存在重复数据。
Bagging策略的基础改进→RF→RF变种算法Extra Tree/Totally Random Trees Embedding(TRTE)/Isolation Forest
提升学习(Boosting)是一种机器学习技术,可以用于回归和分类的问题,它每一步产生弱预测模型(如决策树),并加权累加到总模型中;如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gradient boosting);
提升技术的意义:如果一个问题存在弱预测模型,那么可以通过提升技术的办法得到一个强预测模型;
常见的模型有:Adaboost、Gradient Boosting(GBT/GBDT/GBRT)
Stacking是指训练一个模型用于组合(combine)其它模型(基模型/基学习器)的技术。即首先训练出多个不同的模型,然后再以之前训练的各个模型的输出作为输入来新训练一个新的模型,从而得到一个最终的模型。一般情况下使用单层的Logistic回归作为组合模型。
这m个决策树形成随机森林,通过投票表决结果决定数据属于那一类。
RF在选择划分特征点的时候会和传统决策树一样,会基于信息增益、信息增益率、基尼系数、均方差等原则来选择最优特征值;而Extra Tree会随机的选择一个特征值来划分决策树。
Extra Tree因为是随机选择特征值的划分点,这样会导致决策树的规模一般大于RF所生成的决策树。也就是说Extra Tree模型的方差相对于RF进一步减少。在某些情况下,Extra Tree的泛化能力比RF的强。
TRTE(Totally Random Trees Embedding)是一种非监督的数据转化方式。将低维的数据集映射到高维,从而让映射到高维的数据更好的应用于分类回归模型。
TRTE算法的转换过程类似RF算法的方法,建立T个决策树来拟合数据。当决策树构建完成后,数据集里的每个数据在T个决策树中叶子节点的位置就定下来了,将位置信息转换为向量就完成了特征转换操作。
IForest是一种异常点检测算法,使用类似RF的方式来检测异常点;IForest算法和RF算法的区别在于:
区别原因:目的是异常点检测,所以只要能够区分异常的即可,不需要大量数据;另外在异常点检测的过程中,一般不需要太大规模的决策树。
对于异常点的判断,则是将测试样本x拟合到T棵决策树上。计算在每棵树上该样本的叶子节点的深度ht(x)。从而计算出平均深度h(x);然后就可以使用下列公式计算样本点x的异常概率值,p(s,m)的取值范围为[0,1],越接近于1,则是异常点的概率越大。
RF的主要优点:
RF的主要缺点:
Adaptive Boosting是一种迭代算法。每轮迭代中会在训练集上产生一个新的学习器,然后使用该学习器对所有样本进行预测,以评估每个样本的重要性(Informative)。换句话来讲就是,算法会为每个样本赋予一个权重,每次用训练好的学习器标注/预测各个样本,如果某个样本点被预测的越正确,则将其权重降低;否则提高样本的权重。权重越高的样本在下一个迭代训练中所占的比重就越大,也就是说越难区分的样本在训练过程中会变得越重要。
整个迭代过程直到错误率足够小或者达到一定的迭代次数为止。
Adaboost算法将基分类器的线性组合作为强分类器,同时给分类误差率较小的基本分类器以大的权值,给分类误差率较大的基分类器以小的权重值;构建的线性组合为:
最终分类器是在线性组合的基础上进行Sign函数转换:
优点:
缺点:
对异常样本敏感,异常样本可能会在迭代过程中获得较高的权重值,最终影响模型效果。
梯度提升迭代决策树(GBDT)也是Boosting算法的一种,和AdaBoost区别如下:
AdaBoost算法是利用前一轮的弱学习器的误差来更新样本权重值,然后一轮一轮的迭代;GBDT也是迭代,但是GBDT要求弱学习器必须是CART模型,而且GBDT在模型训练的时候,是要求模型预测的样本损失尽可能的小。
GBDT由三部分构成:DT(Regression Decistion Tree)、GB(Gradient Boosting)和Shrinkage(衰减)。
由多棵决策树组成,所有树的结果累加起来就是最终结果。
迭代决策树和随机森林的区别:
随机森林使用抽取不同的样本构建不同的子树,也就是说第m棵树的构建和前m-1棵树的结果是没有关系的
迭代决策树在构建子树的时候,使用之前子树构建结果后形成的残差作为输入数据构建下一个子树;然后最终预测的时候按照子树构建的顺序进行预测,并将预测结果相加。
两者唯一的区别就是选择不同的损失函数。
回归算法选择的损失函数一般是均方差(最小二乘)或者绝对值误差;而在分类算法中一般的损失函数选择对数函数来表示。
GBDT的优点:
GBDT的缺点:
由于弱学习器之间存在关联关系,难以并行训练模型。
机器学习(5)之集成学习(RF\AdaBoost\GBDT)
原文:https://www.cnblogs.com/tankeyin/p/12144312.html