首先最开始提出的policy gradient 算法是 stochastic的。
这里的随机是指随机策略\(\pi_\theta(a|s)=P[a|s,;\theta]\). 但是随机策略在高维连续动作空间上可能会有问题,毕竟要考虑当前状态下所有的动作带来的不同的影响,需要更多的(s,a)的数据来形成更准确的判断
但是对于确定性策略\(a=\mu_theta(s)\). 过去,认为这样是不可行的,原因待补充。(一个显而易见的原因就是不够explore)
本文就冒天下之大不韪,提出了deterministic policy gradient ,也就是DPG
文章用的off-polcy 用一个stochasitic behavior policy来选择动作,然后学习一个determinisitic target policy.
\[J(\pi_\theta)=\int_S \rho^\pi(s)\int_A \pi_\theta (s,a)r(s,a)dads=E_{s\sim \rho^\pi ,a\sim \pi_\theta}[r(s,a)]\]
\(\rho^\pi(s') = \int_S \sum_{t=1}^{\infty}p_1(s)p(s\to s',t,\pi)ds\)
policy gradient theorem:
\[\nabla_\theta J(\pi_\theta)=\int_S \rho^\pi(s)\int_A \nabla_\theta \pi_\theta (s,a)Q^\pi(s,a)dads=E_{s\sim \rho^\pi ,a\sim \pi_\theta}[\nabla_\theta log \pi_\theta(s,a)Q^\pi(s,a)]\]
critic 通过TD的方式估计 action-value function \(Q^w(s,a)=Q^\pi(s,a)\)
\[\nabla_\theta J(\pi_\theta)=\int_S \rho^\pi(s)\int_A \nabla_\theta \pi_\theta (s,a)Q^w(s,a)dads=E_{s\sim \rho^\pi ,a\sim \pi_\theta}[\nabla_\theta log \pi_\theta(s,a)Q^w(s,a)]\]
behavior policy \(\beta(a|s)\neq \pi_\theta(a|s)\)
\[J_\beta(\pi_\theta)=\int_S \rho^\beta(s)V^\pi(s)ds=\int_S \int_A \rho^\beta \pi_\theta (s,a)Q^\pi(s,a)dads\]
\[\nabla_\theta J_\beta(\pi_\theta)=\int_S \int_A \rho^\beta(s)\nabla_\theta \pi_\theta (s,a)Q^\pi(s,a)dads=E_{s\sim \rho^\beta ,a\sim \beta}[\frac{\pi_\theta(a|s)}{\beta_\theta(a|s)} \nabla_\theta log \pi_\theta(s,a)Q^\pi(s,a)]\]
model free RL 算法通常都是基于GPI(generalised policy iteration: policy evaluation with polcy improvement)。
在连续的动作空间上policy improvement 通过greedy 的方式找到global maxmisation Q 不太可行,所以就不直接找全局最大,而是向全局最大移动。
用公式表示。对于确定性策略\(a = \mu(s)\)
以前的policy improvement:
\(\mu^{k+1}(s)=\underset{a}{max}Q^{\mu^k}(s,a)\)
既然这样找全局最大不可行,我们
\[\theta^{k+1}=\theta^{k}+\alpha E_{s\sim\rho^{u^k}}[\nabla_\theta Q^{\mu^k}(s,\mu_\theta(s))]\]
\[\theta^{k+1}=\theta^{k}+\alpha E_{s\sim\rho^{u^k}}[\nabla_\theta \mu_\theta(s)\nabla_a Q^{\mu^k}(s,a)|_{a=\mu_\theta(s)}]\]
存在的问题,policy 改变,\(\rho^\mu\)就会变,不能看出来是否有policy improvement
\[J(\mu_\theta)=\int_S \rho^\mu(s) r(s,\mu_\theta(s))ds=E_{s\sim \rho^\mu}[r(s,\mu_\theta(s))]\]
\[\nabla_\theta J(\mu_\theta)=\int_S \rho^\mu(s) \nabla_\theta \mu_\theta (s) \nabla_a Q^\mu(s,a)|_{a=\mu_theta(s)}ds=E_{s\sim \rho^\mu}[\nabla_\theta \mu_\theta(s) \nabla_a Q^\mu(s,a)|_{a=\mu_theta(s)}]\]
原文:https://www.cnblogs.com/Lzqayx/p/12146530.html